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Abstract
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dorms on student entrepreneurship at a large public research university. To obtain causal
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students would have had they been assigned to rooms by a proposed room allocation rule,

while controlling for the expected peer traits implied by the same rule. We find that exposure

to peer gender diversity differentially affects men and women and contributes to the gender

gap in entrepreneurial intentions. We also find that exposure to peer verbal skill diversity

reduces entrepreneurial ideation. Our findings suggest that residentially clustering students

by gender and academic strengths can increase student entrepreneurship and reduce the

entrepreneurship gender gap.
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1. Introduction

Universities play a well-known role in innovation (Hausman, 2012; Roessner, Bond, Okubo,

and Planting, 2013) and are often directly involved in fostering entrepreneurship in commu-

nities (Rothaermel, Agung, and Jiang, 2007; Wright, Siegel, and Mustar, 2017; Wright and

Mustar, 2019). However, despite numerous anecdotal accounts of companies formed in college

dorm rooms that grow to become major employers, the scientific literature on how and when

students become motivated to entrepreneurial action is scant. We focus on the role of peers

in driving entrepreneurial behavior by examining how peer exposure in residence halls at a

post-secondary institution influences entrepreneurial intention to start a company and ideas

for products and services. Our study is the first to ask how peer diversity in residence life

may affect entrepreneurial intent. We find that proximate residential exposure to peers with

different verbal skills (as measured by distance between ACT scores) reduced entrepreneurial

ideation and that exposure to gender diversity contributed to gender gaps in entrepreneurial in-

tentions. Effects of university residence hall peer exposure on entrepreneurship are particularly

policy-relevant because costs of changing room assignment policies are negligible, implying that

evidence-based policies informed by any statistically significant effects are essentially guaranteed

to pass a cost-benefit test.

Our investigation of the potential effects of peer assignments on entrepreneurial ideation

and intention takes place among a sample of 6,919 students who lived in dorms in their first

year at the University of Wisconsin-Madison from 2016–2019, and who responded to a yearly

survey of students’ entrepreneurial interest and aspirations at least once. Peer diversity for a

given trait is measured as the average absolute value distance between an individual’s trait and

the same trait for other individuals at a particular geographic distance from them. We focus

on differences between individuals and their roommates for traits of interest, with the notable

exception of gender, for which we focus on differences between individuals and their next-door

neighbors. Because our identification strategy makes use of between-dorm variation in room

assignments, we are also able to estimate effects of building-level characteristics.

For peer effects, we restrict our attention to diversity in student traits because such effects

are particularly policy-relevant. Increasing or reducing diversity exposure for some students

mechanically generates the same effect on other students. This is at odds with the zero-sum

nature of assignments based on raw peer traits. For example, increasing a student’s exposure to
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STEM peers mechanically decreases other students’ exposure to STEM peers, while increasing

a student’s exposure to STEM diversity (peers whose STEM statuses differ from their own)

mechanically increases other students’ exposure to STEM diversity. It follows that main effects

of peer diversity are particularly likely to inform uniformly beneficial policies, rather than ones

that improve outcomes for some students at a cost to others. We also investigate the effects of

dorm-level gender integration and dorm housing of entrepreneurship learning communities.

Our paper makes several contributions. First, our research is the first to examine the

potential impact of room assignment policies in residence halls on student entrepreneurship,

including ideation and students’ long-term interests in entrepreneurship. We find that some

dimensions of peer diversity, such as neighbor gender and roommate verbal skills, negatively

affect entrepreneurship. Further, we do not detect statistically significant effects of peer STEM

major or peer math skill diversity on entrepreneurship. Our results are consistent with recent

research that questions prior work suggesting that diversity increases entrepreneurship, such as

Junkunc and Eckhardt (2009) and Khoshimov, Eckhardt, and Goldfarb (2019).

Second, we contribute evidence in favor of Learning Communities, policies employed by

many universities involving residential clustering of students who share similar academic inter-

ests or other common features. Learning Communities are recommended as high-impact policies

by the Association of American Colleges and Universities, they have been found effective for

student academic engagement and outcomes, and they are commonly implemented by univer-

sities internationally (Zhao and Kuh, 2004; Brouwer, Flache, Jansen, Hofman, and Steglich,

2018). The University of Wisconsin-Madison has 11 such communities. Learning community

assignments in our institutional context are nonrandom, so we do not estimate their effects in

this paper. Nonetheless, our findings corroborate the benefits of clustering students by academic

skills more broadly by finding that such clustering increases entrepreneurship.

Third, our research has important implications for gender diversity in entrepreneurship.

Prior research shows that women are less likely to pursue entrepreneurship than men. (Greene,

Hart, Gatewood, Brush, and Carter, 2003; Sørensen and Sharkey, 2014; Guzman and Kacper-

czyk, 2019). In our data, women are much less likely to report having an idea for a product

or service (ideation) or intention to start a company (entrepreneurial intentions). Effects of

gender diversity on entrepreneurship are of particular interest as an opportunity to reduce the

gender gap in entrepreneurship. A substantial literature suggests that peer gender composition

is an important determinant of outcomes in educational settings. We find evidence that peer
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gender diversity has statistically significant opposite effects on entrepreneurial intentions for

women (negative) and men (positive), contributing to this gap. This is consistent with existing

work showing positive effects of girls and women in academic settings on the academic achieve-

ment and choices of their classmates, as measured by primary school test scores (Gottfried and

Harven, 2015), college dropout postponement (Oosterbeek and Van Ewijk, 2014), and college

majors (Zölitz and Feld, 2021). We also investigate the effect of dorm-level gender integration,

with statistically insignificant results.

Fourth, to estimate effects of dorm and peer assignments, we extend the methods of Ab-

dulkadiroğlu, Angrist, Narita, and Pathak (2017) that calculate and control for expected dorms

and peers implied by a random room assignment mechanism that leverages both student room

preferences and randomized tiebreaker lotteries to (quasi-randomly) assign students to rooms.

These expected treatment controls are sufficient to eliminate omitted variables bias from unmod-

eled determinants of corresponding treatment assignments (Borusyak and Hull, 2020), allowing

us to consistently estimate their effects. Unlike common applications of related methods that

estimate effects of school assignments (Angrist, Hull, Pathak, and Walters, 2021; Angrist, Gray-

Lobe, Idoux, and Pathak, 2022), we are unable to replicate the observed room assignments with

a well-defined room assignment mechanism. Our insight is that the results from Borusyak and

Hull (2020) and Abdulkadiroğlu, Angrist, Narita, and Pathak (2017) nonetheless hold for es-

timation of the effects of the simulated peer traits on both outcomes and realized peer traits,

which permit us to use our misspecified simulated peer and dorm assignments as instruments

for realized peer and dorm assignments. We find dramatically different results when we control

for expected peer assignments using our method relative to simpler methods that do not control

for nonrandom determinants of peer assignments.

In summary, our results suggest fruitful policy interventions relating to housing assign-

ments that universities can implement to increase entrepreneurship rates and reduce the en-

trepreneurship gender gap. Extrapolations from our estimates suggest that assigning students

to roommates with identical ACT verbal scores would increase entrepreneurial ideation by 26

percentage points from a baseline of 23 percent. Meanwhile, similar extrapolations suggest that

completely eliminating neighbor-level gender integration within floors would reduce the gender

gap in entrepreneurial intentions by 15 percentage points from a baseline of 20 points, elimi-

nating 75 percent of the gender gap in intentions at this very early point in students’ careers.

These extrapolations are extreme relative to the variation we commonly find in our data, but
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nonetheless suggest substantial potential effects from implementation of policies based on our

findings.

2. Data and Institutional Setting

2.1. Data Description

Our measures of students’ entrepreneurial proclivity come from an annual survey conducted from

2016 through 2019 of the undergraduate population of the University of Wisconsin-Madison, a

large, public research university. The survey consists of fewer than ten questions which are de-

signed to measure the career aspirations of the student population, including entrepreneurship.

We merge our survey with university administrative data from both the University Registrar

and University Housing. The administrative data contains information from 2016–2019 on the

rooms students live in for years in which they live in residence halls, as well as a wealth of

baseline variables such as gender, race, and intended major. Importantly, the data from Uni-

versity Housing contains the residence hall preference lists provided by students, which is used

to match them to their most-preferred dorms when possible.

Our empirical sample is formed of the subset of undergraduate students who live in dorm

rooms during the fall term of their first year that are assigned the preceding summer and who

respond to our survey on entrepreneurship. There are 24,265 undergraduate students who live

in dorms in their first fall that are assigned during the preceding summer, of whom 6,919 (29%)

also respond to our survey. We omit higher-year students from our sample, even if they live in

the dorms, because they are relatively rare, we expect peer exposure to affect them less than

first-year students, and because we observe many of them as first-years. Similarly, we omit

first-year students who do not receive university residence hall room assignments the summer

before their first fall term (for instance, due to missing the dorm preference deadline) because

they are not included in the university’s general room allocation process that is central to our

empirical strategy. We still make use of data on students who receive university residence hall

room assignments the summer before the fall term who did not respond to our survey because

we observe their baseline characteristics and they are among the peers that potentially affect

the students for whom we observe survey responses. Students who respond to our survey may

do so at any point in their academic career, so we code an individual as having ideation if they

ever report having ideas for products or services, and as having intention if they ever report
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intention to start a business, in order to maximize our effective sample size.

We note that the fundamental level of randomization is of students to dorm rooms, so

we think of all of our treatment variables as characteristics of dorm rooms. The dorm room

characteristics we code relate to the baseline traits of other inhabitants of the room, baseline

traits of inhabitants of nearby rooms, and traits of the residence hall in which the room is

located. We have priors based on the extant literature that exposure to diverse peers will

increase entrepreneurship, so we focus our attention on peer traits relevant to diversity.

The peer traits that we calculate are average peer gender distance, average peer STEM

major distance, average peer ACT math distance, and average peer ACT verbal distance. For

each of these, we calculate the absolute value distance of an individual’s own trait from the

values of each relevant peer, then take the average of this over peers in a particular group. We

calculate these values for each individual’s roommate(s), nearest neighbors, and next-nearest

neighbors, obtaining three treatment variables for each trait. Students are coded to have a

STEM major if their intended major on their college application matches a major from the ICE

list of STEM-designated majors (ICE, 2016). Students are coded as male or female based on

their self-reported gender to university administration. ACT scores come from administrative

data, and we impute ACT scores for students with missing scores using corresponding SAT

scores, AP test count, AP test score average, high school rank, high school class size, and high

school GPA.

To estimate peer effects, it is necessary to identify students’ peers. Students’ roommates

are readily identified as those individuals occupying the same room at the same time as a given

student. To identify neighbors, we reference university blueprints and manually code x, y, and

z coordinates for the doorway for each room on campus using drafting software. We then

calculate Manhattan distances in inches between each room and every other room. This allows

us to identify each room’s nearest three rooms and next-nearest four rooms, the inhabitants of

which are treated as two relevant bins of neighbors for the student(s) in the room.1

In addition to effects of exposure to various types of peers at the room level, we are also

interested in effects of dorm-level assignments. We are particularly interested in characteristics

of residence halls that are manipulable by university administrators, as these are most policy-

relevant at both the university we study and others. With this in mind, we estimate effects of

1This coding is intended to define nearest neighbors as individuals in the three rooms directly adjacent to
or directly across the hall from an individual, and next nearest neighbors as the individuals adjacent to nearest
neighbors.
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dorms that are fully gender-integrated (men and women can live next door to one another).

Additionally, we estimate effects of assignments to the residence hall that houses the StartUp

learning community, a selective residential community that houses 64 students per year with

interests in entrepreneurship in a dedicated floor. Placement into the community itself is done

according to a nonrandom application process, but assignment to the residence hall in which

the learning community is housed is random, and has the effect of placing students in close

proximity to a concentrated mass of peers with a revealed interest in entrepreneurship.

Our empirical strategy controls explicitly for the expected values of treatments, so additional

controls are not necessary for identification of effects of interest. We will nonetheless include

controls in our preferred specifications in the interest of increasing statistical precision. We

control for gender, race, a first-generation college student indicator, ACT math score, ACT

verbal score, a nontraditional student indicator, and major fixed effects (2-digit Classification

of Instructional Programs codes). Summary statistics for the variables we use are available in

Table 1.

2.2. Room Assignment Process

Our estimation of peer effects relies on randomness in the room assignment procedures used by

University Housing. Over 90% of first-year undergraduate students live in residence halls each

year, along with many higher-year students. Students submit their residence hall applications

in the summer prior to arrival on campus and are assigned to rooms by University Housing staff

via a proprietary procedure. After students are notified of their initial assignments, they may

request revisions at any time before or after the beginning of the school year. We observe the

initial (often random) assignments as well as any (nonrandom) changes in room assignments

over time.

A substantial number of initial room assignments are nonrandom. Per interviews with

Housing staff, the following general procedure is used:

1. Allow the athletics department to assign student athletes to rooms.

2. Allow students admitted to Learning Communities to claim preferred rooms in their Learn-

ing Communities.

3. Allow returning students (second years and up) to claim preferred rooms.
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Table 1: Descriptive Statistics

Overall Survey Respondents
Mean SD Mean SD
(1) (2) (3) (4)

Intentions 0.275 0.446 0.275 0.446
Ideas 0.232 0.422 0.232 0.422
Female 0.531 0.499 0.565 0.496
Neighbor Gender Distance 0.384 0.349 0.357 0.351
STEM 0.435 0.496 0.446 0.497
Roommate STEM Distance 0.412 0.485 0.414 0.486
ACT Math 28.634 3.741 28.825 3.713
Roommate ACT Math Distance 3.644 2.857 3.665 2.859
ACT Verbal 57.749 8.944 57.903 8.911
Roommate ACT Verbal Distance 8.801 7.206 8.766 7.170
Nontraditional 0.016 0.125 0.019 0.136
In-State 0.556 0.497 0.607 0.488
First Generation 0.183 0.387 0.181 0.385
Asian 0.071 0.257 0.059 0.236
Black 0.018 0.132 0.015 0.121
Hispanic 0.056 0.230 0.044 0.204
White 0.707 0.455 0.733 0.442
Other Race 0.149 0.356 0.149 0.356
International 0.091 0.288 0.095 0.293
No Roommate 0.039 0.193 0.042 0.201
Random Room Assignment 0.691 0.462 0.670 0.470
Random Roommate Assignment 0.387 0.487 0.407 0.491

Observations 24265 6919

Notes: Means and standard deviations for outcomes, peer traits, and controls for all first-year students in dorms,
as well as students in dorms that respond to our survey on entrepreneurship.
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4. Allow nonstandard students (incoming transfer students and students above age 20) to

claim preferred rooms.

5. Assign genders to rooms to ensure that dorms have space proportional to incoming student

gender shares.

6. Match remaining students to rooms according to a random room assignment mechanism.

7. Adjust assignments using judgment about optimal assignments.

The students assigned via steps 1–4 will not be randomly assigned to rooms, but they may be

randomly assigned to peers, as the neighbors assigned to them may be assigned according to the

random mechanism. In most cases, the students assigned according to steps 1–4 will not have

randomly assigned roommates. Similarly, the university allows incoming first-year students to

designate a preferred roommate with whom they will share a room. These students will similarly

not be randomly assigned to roommates, though they will still be randomly assigned to dorms

unlike those assigned via steps 1–4. The shares of randomly and nonrandomly assigned students

for rooms and roommates are shown in Table 1.

The random procedure used by Housing is proprietary, and Housing staff may use judgment

in assigning students to dorms and rooms (Step 7).2 With the caveat that Housing staff judg-

ment dominates other considerations, Housing staff conveyed to us the following information

regarding the dorm assignment mechanism:

1. Assign each student on campus a random number.

2. Assign each set of predetermined roommates the minimum value of their random numbers.

3. Order students in ascending order of random numbers.

4. Proceed through the list from top to bottom, assigning each student to a room in their

favorite dorm if possible, otherwise their next favorite, etc, with each student’s assignment

being resolved before considering subsequent students’ preferences.

The assignment mechanism described by Housing staff for dorm assignments corresponds to the

2For instance, in interviews Housing staff reported attempting to place students from the same high school in
different rooms, with the intuition that those individuals would have explicitly requested each other as roommates
if they had desired such a match.
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Random Serial Dictator (RSD) assignment mechanism for randomly assigned students.3

The above details are sufficient to describe dorm placements. Housing does not have official

guidance for its staff regarding room placements within dorms. This presents a challenge for

us in replicating room (and therefore peer) assignments observed in the data. Empirically,

we find that students clustered together in the random tie breaker order are also clustered

geographically within dorms. We will discuss the methods we use to deal with this in detail in

section 3.4..

3. Empirical Strategy

3.1. Dorm Choice

We estimate effects of peer gender distance, peer STEM distance, ACT score distance, dorm

gender integration, and dorm entrepreneurial culture on entrepreneurial ideation and intention.

Raw comparisons between individuals with different peers or dorms will not identify treatment

effects for peer or dorm traits of interest if individuals choose dorms or rooms based on their

entrepreneurial proclivity or unobserved personality traits correlated with entrepreneurial pro-

clivity. For instance, if students who are more open to experience are more entrepreneurial

and also tend to prefer dorms with diverse student populations, we may observe correlations

between exposure to diversity and entrepreneurship that will not reflect peer treatment effects.

To address selection bias, our empirical strategy leverages the randomness in the room

assignment mechanism used by University Housing. To facilitate the discussion, we adapt no-

tation from Abdulkadiroğlu, Angrist, Narita, and Pathak (2017) to describe room assignments.

A room assignment mechanism assigns individuals i = 1, 2, ..., N in set I to room-spots (beds)

indexed by s, with s = 1, 2, . . . , S. There are N total students and S total room spots, where

a particular feature of our setting is that N = S.

Each student i in our setting submits a complete preference ordering over dorms, ≻i, where

A ≻i B means that student i prefers dorm A to dorm B.4 In principle, we allow for each room

s to give priority ρis to each student i with ρis < ρij indicating the room prefers to house i over

3Random Serial Dictator is a special case of the Deferred Acceptance mechanism. A more comprehensive
description of the room assignment mechanism described is that Deferred Acceptance is used, where rooms give
individual-specific priority (unobserved to the researcher) to particular athletes, non-first-years, nontraditional
students, and students admitted to learning communities, with those students have corresponding preferences for
their rooms.

4Students are allowed to list up to 25 dorm preferences. We assume that students who do not fill their
preference ranking list are indifferent between omitted dorms.
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j. We do not have details on the priorities that rooms place on students ex ante, but describing

rooms as giving students de facto priorities allows us to describe unobserved-to-the-researcher,

nonrandom determinants of housing assignments with standard allocation mechanism language

and notation. For instance, we describe rooms that house women or men as giving priority

to their respective gender, and we describe rooms that house non-first-year-students as giving

priority to the individual student who resides in the room, with all other rooms giving priority

to other students.

Each student has a type indicated by θi = (≻i,ρi), where ρi is a vector that contains

i’s priority in each room. In our application, we observe ≻i for all students, but we do not

necessarily observe ρi, as this incorporates the judgment used by Housing staff in allocating

students to rooms in accordance with University objectives. Each student is also assigned a

random tiebreaker, ri, which we also observe. A mechanism φ is a mapping from students’

types and random numbers into room-spot assignments for all students. A student’s room-spot

assignment as determined by mechanism φ is given by µφ
i (θ, r), with i’s realized assignment

µi(θ, r) = µ∗
i (θ, r) being defined as the assignment determined by the true (unknown) allocation

mechanism, denoted by φ = ∗.5

The room choice problem we describe assigns students to rooms, but it is impractical to

conceive of room-level treatments. First, very few (usually two) students are assigned to each

room at a given time, so we will be woefully underpowered to identify treatment effects for

rooms. Second, any room-level treatment effects will lack policy relevance outside of our imme-

diate institutional context because the rooms in our study only exist at our university. Third,

the primary treatments of interest to our study are the traits of peers, which are not fixed at

the room level (with the notable exception of gender), but are rather characteristics of the indi-

viduals inhabiting them. We therefore describe individual i’s treatment status Dik(µ
φ(θ, r)) for

treatment k = 1, . . . ,K as a function of the vector of room-spot assignments under mechanism

φ for themselves (dorm effects) and other students (peer effects).

3.2. Treatment Effect Estimation via Stratification

The empirical strategies we implement leverage conditional randomization in the room assign-

ment procedure. A general representation of the models we will estimate (omitting k subscripts

5The µφ notation allows us to readily express assignments under alternative mechanisms. For instance, i’s
room-spot assignment under the Boston dorm assignment mechanism, followed by a room assignment mechanism
that places students in rooms in ascending room number order, would be denoted µBoston,RN↑

i (θ, r).
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to distinguish peer traits) is

Yi = βφ
0 + βφ

DD
φ
i + βφE[Dφ

i |θ] + ϵφi , (1)

where Yi is a binary indicator for whether a student has an idea for a product or service or

intention to start a company, Dφ
i = Dik(µ

φ(θ, r)) is the value of a treatment such as the share

of i’s roommates under a given mechanism with different major STEM statuses, E[Dφ
i |θ] is the

expected value of this treatment variable for student i, and ϵφi captures unobserved determinants

of outcomes. βφ
0 is a constant and the coefficient βφ

D is the effect of treatment assignment as

implied by mechanism φ. Conditioning on the expected value of treatment (the propensity score

for binary treatments) eliminates selection bias by siphoning out the variation in treatment that

is nonrandom (Rosenbaum and Rubin, 1983; Imbens, 2000; Borusyak and Hull, 2020). We model

treatments as defined by an arbitrary mechanism φ, but our ultimate goal is estimation of effects

of realized treatment, Di.

The key to identification of the effect of Dφ
i is to properly calculate E[Dφ

i |θ], or to include

covariates that are sufficient statistics for it. Controlling for the expected value of treatment is

fundamentally similar to controlling for all nonrandom determinants of treatments, θi (Rosen-

baum and Rubin, 1983). While we will rely on simulations to directly calculate E[Di|θ], our

identification strategy is closely related to the case in which students are assigned randomly

to rooms conditional on observed covariates, such as gender and dorm. More generally, our

empirical strategy is a stratified randomized research design with selection on observables.6

There are three noteworthy approaches for estimating peer effects that will not reliably

provide consistent estimates in our setting. The first is to condition on dorm assignments

under the assumption that students are randomly assigned to rooms within their endogenously

chosen dorm, such that the dorm chosen by student i is modeled as an element of θi, but their

specific room is not. We are concerned that students placed into dorms early in the assignment

procedure will both rank their dorm highly and be placed near to one another within the dorm

6In an institutional setting where students pick their dorms, but rooms and roommates were assigned randomly
conditional on dorm, the preferred dorm would included in θi and expected peer exposure could be calculated
via simulation as we do in this paper. Such cases have a relatively small number of strata (the number of dorms,
or perhaps double this to account for gender-specific assignments), making calculation of expected treatments
unnecessary.
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— introducing nonrandom dorm-preference clustering within dorms.7 The next approach is to

control for every possible permutation of dorm preferences. There are 21 dorms on campus and

there is no limit to the number of dorms a student can list, so in principle, this would require

controlling for fixed effects for 21! permutations of dorm preferences, likely interacted with

student gender (with exceptions for permutations that describe zero students). Not only would

this approach condition out the vast majority of treatment variation in the data, but it also may

not even be sufficient to control for students’ types, as Housing staff may use information other

than preferences and gender to make room assignments (θ contains more than just preferences

and gender). The final approach is to calculate E[D∗
i ] using details of the room allocation

mechanism used by Housing, either via simulations or via analytic formulas for the expected

values of treatment, as provided by Abdulkadiroğlu, Angrist, Narita, and Pathak (2017). In

our case, we do not know the mechanism used by Housing, so we cannot calculate E[D∗
i ].

While we cannot calculate E[D∗
i ], we can calculate E[Dφ

i ] for an arbitrary mechanism, φ,

that we specify. As explained by Abdulkadiroğlu, Angrist, Narita, and Pathak (2017), treat-

ment effect estimates can be obtained for conditionally random assignment to treatment as

long as the assignment mechanism satisfies the Equal Treatment of Equals (ETE) condition.

The ETE condition requires that students with the same type (preferences, ≻, and priorities,

ρ,) have identical assignment probabilities for each room. Following the argument of Abdulka-

diroğlu, Angrist, Narita, and Pathak (2017), we can estimate the effects of treatment Dφ for any

mechanism that satisfies ETE by controlling for E[Dφ
i ], which we can calculate via simulation.8

It follows from the above that βφ, the effect of the treatment agents would get were they

assigned according to mechanism φ, is identified. This parameter does not have immediate

policy relevance, despite its causal interpretation, unless it happens to correspond to realized

treatment assignments such that Dφ
i = D∗

i . However, following the same arguments as we give

above for the effect of Dφ
i on Yi, we can also estimate the effect of Dφ

i on Di from

Di = γφ0 + γφDD
φ
i + γφE[Dφ

i |θ] + uφi , (2)

7Our concern is validated by the relationship between peer tiebreakers and our simulated peer tiebreakers
(which are generated using a simulation that produces extreme clustering) shown in Table 2. A particularly
extreme form of this sort of clustering would occur, as one example, if Housing staff filled dorms in room number
order, with low room numbers filled exclusively with students with low (lucky) priority numbers who rank that
dorm first in their preference list.

8It seems to us that the ETE condition is an assumption on the knowledge of the researcher of the details of
a mechanism and the observability by a researcher of its inputs θ and ρ. From the perspective of the mechanism
or the individuals implementing it, it is tautological that equals are treated equally.
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where γφD is identified as the effect of assignments as implied by mechanism φ on actual as-

signments Di under the same argument made above for its effect on Yi. The equations (1) and

(2) together form the reduced form and first stage, respectively, of a just-identified instrumen-

tal variables model. It follows from the identification of βφ
D and γφD that the effect of actual

assignments on outcomes is also identified as

β∗
D =

βφ
D

γφD

under standard instrumental variables assumptions, which we will discuss presently.

3.3. Identification Assumptions

The instrumental variables independence assumption requires that any systematic relationship

between students’ treatment assignments and the value of the instrument are captured by

control variables. Because we explicitly control for the expected value of the instrument for

each individual, this condition is almost sure to be satisfied (Imbens, 2000; Hirano and Imbens,

2004; Borusyak and Hull, 2020). The threat to this condition is overfitting, in which the

mechanism that we specify accidentally explains observed treatments well without distinguishing

between types of students with respect to expected treatments. We will discuss the threat to

independence from overfitting in greater detail in section 3.4..

The instrumental variables exclusion restriction requires that treatment assignments as de-

termined by a chosen mechanism only affect outcomes via the actual treatment. The possibility

that simulated treatment assignments affect outcomes through a channel unrelated to Housing

assignments, such as students assigned by the mechanism to the StartUp dorm happening to

have entrepreneurial parents, is addressed by controlling for expected values of instruments.

A more subtle issue relating to the exclusion restriction is that an infinite number of unmod-

eled peer and dorm characteristics are contained within the error term ϵφ in equation (1), and

these unmodeled peer and dorm traits are certainly correlated with treatments of interest to our

study. For instance, assignment to the StartUp dorm also means being assigned across the street

from the Business School, being assigned to the most popular dorm on campus (as measured by

the percentage of students listing it as their first preference), being assigned in close proximity

to the disability resources center, and being assigned in close proximity to a recreation center.

Some, but not all, of these traits are shared by other dorms, and the intersection of these traits
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uniquely defines the StartUp dorm. It follows that were we to include these alternative traits

in our empirical specifications with sufficient flexibility, they would be perfectly collinear with

the StartUp dorm treatment assignment, rendering us unable to distinguish their effects. We

address this issue by modelling treatments that we believe are most salient to our outcomes

ex ante, with the caveat that further study in other settings would be particularly useful for

distinguishing between multiple explanations for effects we find.9

The monotonicity assumption (Imbens and Angrist, 1994) implies that instruments that

increase the likelihood of treatment on average do so for everyone. In our context, this means

that receiving a particular type of simulated peer never makes any individuals in the data less

likely to receive that type of actual peer. We consider two cases.

The first is the case in which our room assignment mechanism is fundamentally misspecified,

in which case it will fail to predict actual assignments at random for some individuals. This

may create situations in which an individual with a particular type of simulated peer does

not have the same type of actual peer. Problematically, it could also be the case (as with

random allocation mistakes) that such an individual would have the same type of actual peer

if they did not have such a simulated peer. The existence of any such “defiers”, which we deem

very likely, constitutes a violation of Imbens and Angrist’s monotonicity condition. However,

because these individuals’ assignments are simulated incorrectly at random because of our

misspecification of the assignment mechanism, it is implausible that they are systematically

different from other students with respect to the effects of peer assignments. We therefore invoke

the weaker compliers-defiers condition described by De Chaisemartin (2017), which implies that

we still recover meaningful local average treatment effects when a sufficiently large subset of

the compliers share treatment effects with the defiers.

A more worrying possibility is that there are cases when our chosen room assignment mecha-

nism matches the original room assignments made by housing staff in the summer, but students

request reassignments. This mirrors monotonicity issues that occur in encouragement designs,

such as when financial inducements may crowd out intrinsic motivation (Gneezy and Rustichini,

2000). Students (or their parents) who find a way to achieve particular dorm or peer assign-

ments regardless of their initial placements are always takers or never takers in the language

9This issue is paralleled in the school choice literature. For instance, the student assignments to charter
schools described in Abdulkadiroğlu, Angrist, Narita, and Pathak (2017) are likely correlated with innumerable
pedagogical or administrative practices at those schools. If the true drivers of student outcomes are these
practices, rather than a school’s status as a charter, the results from AANP will only have external validity to
other contexts with similar correlation between charter school status and these practices.
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of Angrist, Imbens, and Rubin (1996), and will not contribute to estimates. However, students

who tend to request reassignments regardless of their initial assignments, for instance because

they have unrealistic expectations about how well they will get along with their initially as-

signed roommate, will be defiers. It seems reasonable that these individuals may have somewhat

different responsiveness to peer exposure on average than compliers, threatening the validity

of the De Chaisemartin (2017) compliers-defiers condition. We explore the likely extent of this

issue in Appendix Appendix B:, finding that room switches in the summer are quite rare which

gives us confidence that sufficient compliers exist that cancel out any such defiers.

The stable unit treatment value assumption (SUTVA) implies that there is no unmodeled

treatment heterogeneity (Rubin, 1978, 1980, 1990). A commonly discussed case of this is un-

modeled spillovers, which is a particular concern in our setting. This assumption is violated

if traits of peers that we do not include in our models (those of peers who are further than

seven rooms away from an individual) affect individuals directly or indirectly (by affecting their

nearby peers). To distill this into a concrete example, it may be that some individuals have

STEM peers who have STEM peers, while other individuals have STEM peers who have a

mix of STEM and non-STEM peers, and these are fundamentally different types of peers with

respect to their effects on outcomes.

In our view, a simpler example of a SUTVA violation is that of essential treatment het-

erogeneity, where the treatment assignment means different things for different individuals.

Continuing with the STEM example, SUTVA will be violated if being assigned a Biology major

roommate has different effects than being assigned an Engineering major roommate, as we code

both of these as STEM roommates. Because of both of these concerns regarding SUTVA in our

application, we instead assume uniform, unordered monotonicity (Harris, 2022), which imposes

that having simulated peers of a particular type (STEM roommate) weakly increases assignment

of all unobserved component treatment types (all types of STEM roommate). In simple terms,

this assumption requires that instrumental variables do not cause within-treatment switching,

such as if being assigned a simulated STEM roommate increased the likelihood of having an

Engineering major roommate and decreased the likelihood of a Biology major roommate.

In summary, our empirical strategy is especially robust to the independence assumption.

Its robustness to the exclusion assumption relies on us choosing the most relevant treatments

in a strict sense, but it relies only on the correlations between the treatments we choose and

unobserved treatments in our sample resembling those in the population to preserve policy
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relevance of treatment effect estimands. We expect our instruments to satisfy complier-defiers

monotonicity but to violate SUTVA, so we impose the alternative assumption of uniform, un-

ordered monotonicity which allows us to interpret the effects of modeled peer assignments as

convex averages of unmodeled peer assignments.

3.4. Instrument Selection

In the prior section we discussed independence, exclusion, monotonicity, and SUTVA for our

instrumental variables, but we did not discuss relevance — the requirement that instruments

are predictive of treatments of interest. This section describes our procedure for choosing a

room assignment mechanism to use to construct instrumental variables with the intention of

avoiding weak instruments and maximizing our power for estimating treatment effects.

We begin the discussion with a general representation of the problem, which will establish a

connection to the model selection literature. The key insight is that there are an infinite number

of potential mechanisms that we could propose for assigning students to dorm rooms. It follows

that there are an infinite number of valid simulated instruments for peer and dorm assignments.

These realizations lead us to instrumental variables model selection methods, such as those

described by Belloni, Chen, Chernozhukov, and Hansen (2012) and Belloni, Chernozhukov, and

Hansen (2014). Broadly speaking, these methods consider first stage equations that are similar

to equation (2) that in principle allow for an arbitrarily large number of instrumental variables,

such as

Di = γ0 +
Φ∑

φ=1

(γφDD
φ
i + γφEE[D

φ
i |θ]) + ui, (3)

with φ = 1, 2, ...,Φ indexing the proposed room assignment mechanisms, with the important

point being that Φ >> N .

Model selection methods search over many specifications like those in equation (3) and

identify the one(s) that include the strongest instruments. While our problem is the same

on a fundamental level, we face nonstandard challenges relative to common applications that

use these methods for instrument selection. First, for us to construct an instrument, we must

conceive of (or identify in the literature) a room assignment mechanism, code the mechanism

in statistical software, and run the code that generates instruments using the mechanism. This

is costly in terms of cognition, human time, and computational time. Secondly, restricting
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ourselves to a single best-performing mechanism is particularly attractive for interpreting effects

in the context of our institutional setting.10 Finally, as we will discuss further in a moment,

we are at particular risk of overfitting equation (3) if we search over an arbitrary number of

mechanisms.

The particular risk of overfitting in our application comes from each student receiving a

unique value of the tiebreaker, ri, with simulated room-spot assignments being a unique and

deterministic function of r and observables.The implication of students all receiving unique val-

ues of random tiebreakers is that it is possible to construct simulated instruments and expected

simulated treatments that (1) satisfy Equal Treatment of Equals, (2) perfectly rationalize all

observed assignments, yielding a deterministic first stage, and either (3a) explain all of the vari-

ation in actual treatments with simulated treatments, generating extremely strong instruments

or (3b) explain all of the variation in actual treatments with expected simulated treatments,

generating extremely weak instruments.

As an example of case (3a) above, consider the egregiously overfit mechanism φ = ∗∗ that

satisfies µ = µ∗(θ, r) = µ∗∗(r). This mechanism effectively observes the room-spot student

i was assigned and infers that any student assigned random tiebreaker ri in a counterfactual

assignment allocation would receive room-spot µi, such that µ∗∗
j (ri) = µ∗∗

i (ri) for all j ̸= i.

This mechanism trivially satisfies ETE because all students have equal probabilities of all room

assignments, implying that all students of the same type do as well. Because µi(θ, r) = µ∗∗
i (r)

for all i, it follows that the first stage in (2) collapses to

Di =γ∗∗0 + γ∗∗D D∗∗
i + γ∗∗E[D∗∗

i |θ] + u∗∗i

=D∗∗
i .

(4)

D∗∗
i is a strong instrument for Di (its F-statistic is unboundedly large regardless of sample

size), with the expected value of simulated treatments playing no role in predicting actual treat-

ment assignments. There is minimal variation in E[D∗∗
i |θ], so it will fail to capture unobserved

determinants of room assignments in (1) as well. It follows that implementing a two-stage

least squares regression using D∗∗
i as an instrument for Di while controlling for E[D∗∗

i |θ] is
10In other words, using simulated instruments from a single mechanism that is established in the mechanism

design literature allows us to describe our reduced form effects from equations like (1) as “the effect of peers a
person is assigned under mechanism φ on outcome Yi”. The inclusion of instruments from multiple mechanisms
weakens this intuition, in our view.
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approximately equivalent to the naive OLS specification

Yi = β0 + βDDi + ei, (5)

which is unlikely to identify causal estimates due to selection, as discussed above.11

As an example of case (3b) above, where a deterministic mechanism produces weak instru-

ments, consider the deterministic-on-observables mechanism φ = θ that satisfies µ = µ∗(θ, r) =

µθ(θ), where sufficient individual characteristics are contained in θ to perfectly determine assign-

ments. This mechanism effectively observes the room-spot i was assigned and infers that they

must have been nonrandomly assigned to that spot based on spot priorities over student char-

acteristics, the simplest case of which is that preferences are ignored, and each room-spot gives

special priority to the student that inhabits it. It follows that each individual would always be

assigned their actual room in any counterfactual assignment allocation, with µθ
i (θ, r) = µθ

i (θ, r
′)

for all i for any alternative set of tiebreakers r′. In this case, the first stage in (2) collapses to

Di =γθ0 + γθDD
θ
i + γθE[Dθ

i |θ] + uθi

=E[Dθ
i |θ].

(6)

Here, Dθ
i is a weak instrument (with an F-statistic of zero regardless of sample size), with

expected treatments completely explaining realized treatments. Dθ
i is perfectly collinear with

E[Dθ
i |θ] so treatment effects in (1) are unidentified. We prefer mechanism θ to mechanism

∗∗ because it honestly reports its usefulness with an F-stat of zero, but both mechanisms are

inadequate for treatment effect estimation.

In order to identify a mechanism that avoids overfitting while also predicting treatment

assignments, we place constraints on ourselves in our mechanism search. First, we interviewed

University Housing prior to attempting to rationalize observed assignments with any mechanism,

and we constrain ourselves to dorm assignment mechanisms that we discussed with them.12

Second, we require that all mechanism guesses make use only of characteristics that Housing told

us they use: random tiebreakers, gender, nontraditional student status, year of study, athlete

status, learning community status, predetermined roommate status, and dorm preferences.

11We say that instrumenting for Di with D∗∗
i while controlling for E[D∗∗

i |θ] is approximately equivalent to
OLS with no controls because E[D∗∗

i |θ] still accounts for individuals’ inabilities to be their own peers. Each
individual’s value of E[D∗∗

i |θ] will be constructed as the sample leave-one-out mean of D, which is similar to an
OLS regression controlling only for individual i’s own trait, with no other room assignment strata indicators.

12In addition to constraining us in terms of specification search, this also drastically reduced our workload.
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Third, we restricted ourselves to monotonic functions of random tiebreakers; that is, we require

that assignment to preferred dorms are monotonically decreasing in the value of the random

tiebreaker (early ranked students get their preferences over late students). Fourth, we do not

explicitly target our peer or dorm treatments of interest, but instead we target all individual

dorm assignments and peer random tiebreaker assignments. In other words, we do not attempt

to find a mechanism that rationalizes assignment to coed dorms or to peer gender diversity; we

instead attempt to find a mechanism that rationalizes realized dorm assignments generally and

realized peer tiebreaker values.13

We consider three dorm assignment mechanisms and three room assignment mechanisms

that condition on dorms being assigned according to the dorm mechanism that best rationalizes

realized dorm assignments. All of the mechanisms we consider have some common components.

First, we hold fixed rooms for individuals described by Housing as not being randomly as-

signed: athletes, nontraditional students, students in learning communities, and students with

no recorded random tiebreaker. These individuals will not contribute to dorm effect estimates

because their expected dorm is equal to their realized dorm. They will contribute to peer effect

estimates because though they are not randomly assigned to rooms, their roommates and neigh-

bors may be. Second, following advice from Housing, we place students in remaining dorms

or room spots at random after all other students are assigned if their preferences are insuffi-

cient to place them according to the other rules of a mechanism. This is primarily relevant for

individuals who do not provide complete preferences on their dorm preference sheet.

We consider three dorm assignment mechanisms. First, we consider random serial dicta-

tor, which assigns each individual to their preferred dorm if it is available, then to their next

preferred, and so on, in order ri = 1, 2, ..., N without reference to other individuals. Next,

we consider the Boston mechanism, which assigns individuals in order ri = 1, 2, ..., R to their

first preferred dorm if possible, otherwise skipping them. Then it repeats this for unassigned

individuals for their second preferred dorm, and so on, until all students are assigned. Finally,

because Housing reported occasionally deviating from RSD in an effort to fill unpopular dorms

with students who like them relatively well, we consider a mechanism we call Boston→RSD

which assigns individuals in order ri = 1, 2, ..., R to their first preferred dorm if and only if it

is on a list of unpopular dorms if possible, otherwise skipping them. Then it repeats this for

13If Housing staff place individuals sequentially in a floor or hall who are sequential in the random tiebreaker
order, we will see substantial geographic clustering with respect to random tiebreakers and our guesses that
replicate this clustering will also replicate peer assignments of interest to the study.
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unassigned individuals for their second preferred dorm, and so on, until all unpopular dorms

are filled. It then places remaining students in dorms according to RSD.

We also consider three room assignment mechanisms, conditional on dorms being assigned

according to the dorm mechanism that best rationalizes realized dorm assignments. The first,

which we term Room ID order, is that students are placed in rooms in ascending room ID

order as they are placed into a hall, where room ID is an administrative record that is distinct

from room numbers. The second, which we term Room # order, is that students are placed in

rooms in ascending room number order as they are placed into a hall, where room number is the

publicly observable number for each room, viewable while standing outside the door. Finally

we consider a geographic order, which places students into rooms in a zig-zag using x and y

coordinates for room doorways, and ascending z (floor) order.14

Standard tests of instrument strength would estimate equations such as (3) and consider the

F-statistic associated simulated instruments from each mechanism. We opt for an alternative

approach due to the computational intensity of calculating E[Dik(µ
φ(θ, r))|θ] for all i and k

for each mechanism. We estimate the following seemingly unrelated regression (SUR) model

to evaluate mechanism accuracy for all J dorms in j = 1, 2, ..., J for each dorm assignment

mechanism,

Dormi,1 = αφ
DormDormφ

i,1 + ui,1

Dormi,2 = αφ
DormDormφ

i,2 + ui,2

...

Dormi,J = αφ
DormDormφ

i,J + ui,J ,

(7)

where we emphasize that the constant is constrained to 0 and all equations in the model are

constrained to share a single slope coefficient. αφ
Dorm has the attractive property of giving

the probability of individual i having a realized assignment to dorm j conditional on having

simulated assignment to dorm j. We similarly estimate accuracy measures for peer tiebreakers

14There are myriad plausible ways to code geographic room orders, all of which will produce very similar
peer assignments if they respect our monotonic tiebreaker constraint. Generally, all rotations and reflections
of assignments for symmetric dorms will produce identical peer assignments, while less extreme diversions (or
approximations of such diversions in asymmetrical dorms) will produce similar peer assignments. We consider
only a single geographic order rather than embarking on a specification hunt among many extremely similar
mechanisms that explicitly replicate tiebreaker clustering geographically with room assignment clustering.
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as

ri,0 = αφ
r r

φ
i,0 + δφi,0 + ui,0

ri,1−3 = αφ
r r

φ
i,1−3 + δφi,1−3 + ui,1−3

ri,4−7 = αφ
r r

φ
i,4−7 + δφi,4−7 + ui,4−7,

(8)

where ri,0 gives the average tiebreaker for individual i’s realized roommate, ri,1−3 gives the

same for next-door neighbors, ri,4−7 gives the same for the next nearest neighbors. The φ

superscript gives the same values for simulated assignments, with δφi denoting simulated dorm

fixed effects. We report dorm assignment mechanism accuracy, αφ
Dorm, in Panel 1 of Table 2

and room assignment mechanism accuracy, αφ
r , in Panel 2 of Table 2 for all the mechanisms we

consider.

In the interest of thoroughness, we cross-validate mechanism accuracy for five samples of

students in our data who are randomly assigned to dorms and rooms (where we keep only

those with roommates for the room assignment accuracy). The Random 1 and Random 2

samples are randomly chosen, mutually exclusive halves of all randomly assigned students. We

also consider 2016 (a year when Housing staff reported they exercised less judgment in room

assignments) separately from later years (when Housing staff exercised more judgment in room

assignments). Finally, we also calculate accuracy for the entire sample of randomly-assigned

students. We choose mechanisms with the highest accuracy measures, RSD and Room #, for

the total sample to construct instruments for inclusion in 2SLS models described by equations

(2) and (1), but we are encouraged by the cross-sample consistency in accuracy-maximizing

mechanisms.

Our selected mechanisms produce simulated and expected dorm and peer treatment assign-

ment statuses described in Table 3. There are three main takeaways from this table. First, our

simulated and expected treatments have means that are extremely close to the means of realized

treatments. Second, realized and simulated treatments have significantly more variance than

expected treatments. Our identification strategy uses residual variation that is common to both

simulated and realized treatments after conditioning on expected treatments to identify effects,

so relatively low variance in expected treatments is good news.15 Finally, we do much better at

matching dorm assignments than peer assignments, which is unsurprising given Housing staff’s

15Note that expected treatments vary well over half as much as actual treatments, suggesting that most of the
variation in peer and dorm assignments are driven by selection.
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Table 2: Mechanism Selection

Random 1 Random 2 2016 2017-2019 Total
(1) (2) (3) (4) (5)

Panel 1: Dorm Assignments

RSD 0.885 0.872 0.958 0.859 0.879
(0.002) (0.002) (0.002) (0.002) (0.002)

Boston 0.836 0.779 0.865 0.813 0.815
(0.003) (0.003) (0.004) (0.003) (0.002)

Boston → RSD 0.000 0.628 0.740 0.670 0.676
(0.000) (0.004) (0.005) (0.003) (0.003)

Observations 2319 2319 1437 3201 4638

Panel 2: Peer Assignments

Room ID 0.493 0.505 0.452 0.483 0.498
(0.011) (0.011) (0.013) (0.010) (0.008)

Room # 0.519 0.502 0.464 0.490 0.509
(0.011) (0.011) (0.013) (0.010) (0.008)

Geographic 0.526 0.490 0.452 0.494 0.507
(0.011) (0.011) (0.013) (0.010) (0.008)

Observations 2091 2113 1339 2865 4204

Notes: Mechanism accuracy for dorms as measured by αφ
Dorm from the seemingly unrelated regression model

(7) in Panel 1 and mechanism accuracy for rooms as measured by αφ
r from the seemingly unrelated regression

model (8) in Panel 2. Mechanism details are described in the text. Robust standard errors of accuracy statistics
in parentheses.

description of having fixed heuristics for dorm assignments but not room assignments.

4. Results

We estimate effects of dorm gender integration, dorm entrepreneurial culture, peer gender di-

versity, and peer academic diversity on entrepreneurial intentions and ideas using two stage

least squares specifications defined by equations (1) and (2). It is possible in principle for us to

include all treatments in a single specification, but we instead make use of specifications only

using closely linked treatments in the interest of obtaining administratively actionable results

and to preserve instrument strength.

Correlated treatment assignments produce particular complications for generating adminis-

tratively feasible, actionable insights for models containing multiple treatments. For instance,

we find that verbal skill diversity has negative effects on ideation. It is possible that part of this

total effect is driven by correlation between verbal skill diversity and gender diversity (which

has statistically insignificant effects in the same direction). For a complicated room assignment

policy that conditions jointly on many student characteristics to make optimal assignments,
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Table 3: Treatment Assignment Description

Survey Respondents
Mean SD
(1) (2)

Neighbor Gender Distance 0.357 0.351
Simulated Neighbor Gender Distance 0.361 0.354
Expected Neighbor Gender Distance 0.362 0.270
Roommate STEM Distance 0.414 0.486
Simulated Roommate STEM Distance 0.424 0.484
Expected Roommate STEM Distance 0.425 0.382
Roommate ACT Math Distance 3.665 2.859
Simulated Roommate ACT Math Distance 3.697 2.829
Expected Roommate ACT Math Distance 3.710 2.367
Roommate ACT Verbal Distance 8.766 7.170
Simulated Roommate ACT Verbal Distance 8.967 7.233
Expected Roommate ACT Verbal Distance 8.939 5.997
StartUp Dorm 0.148 0.355
Simulated StartUp Dorm 0.148 0.355
Expected StartUp Dorm 0.153 0.258
Coed Dorm 0.678 0.467
Simulated Coed Dorm 0.681 0.466
Expected Coed Dorm 0.685 0.379
No Roommate 0.042 0.201
No Simulated Roommate 0.047 0.213

Observations 6919

Notes: Means and standard deviations for outcomes, peer traits, and controls for all first-year students in dorms
as well as those that respond to our survey on entrepreneurship.
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results from specifications including the full set of treatments are relevant. For simpler policies

based on effects of a single peer trait, single-treatment specifications answer the policy-relevant

question. In other words, it is policy-relevant to identify the total (statistically significant) effect

of verbal skill diversity on ideation, even if part of the effect is actually due to gender diversity.

In addition to our interest in obtaining administratively actionable results, we also want to

obtain statistically sensible results. In our specifications, including a large number of treatments

necessitates also including a large number of expected treatment controls. Even though each

treatment’s first stage only requires its own expected treatment as a control, standard 2SLS

also includes expected treatments for all other treatments in the first stage. This has the effect,

in small samples, of consuming residual variation in the first stage that could be attributable to

instruments with control variables, resulting in weak instrument problems.16 With this in mind

we focus on parsimonious models with small numbers of closely related treatment variables.

We begin our discussion of estimates with dorm effects, as these are the treatment assign-

ments that we do the best job of predicting (see Table 2). Results for the effects of gender-

integrated (coed) dorms and the StartUp dorm are in Table 4. We find no statistically significant

treatment effects for either type of dorm on either ideation or intention, despite substantial F-

statistics for our instruments between 50 and 300 depending on our specific (well above the

heuristic threshold of 10 frequently recommended). This is strongly at odds with conclusions

suggested by the raw OLS results without controls, which suggest strong positive associations

between coed dorm assignments on ideas and intentions on men and negative associations for

women. OLS with controls suggests large and statistically significant associations of 8 percent-

age points between StartUp dorm assignment and intention for men, at odds with the treatment

effect estimate of -0.002 in our preferred specification. We note that the inclusion of extra con-

trols has very little effect on IV point estimates, which is predictable given our identification

strategy.

We next discuss effects of peer gender diversity, which are shown in Table 5. There is no

variation in gender diversity at the roommate level, so we restrict our attention on gender di-

versity to gender distance between each individual and their next-door neighbors. We do quite

16A potential answer to this issue is to impose exclusion restrictions on simulated and expected treatments
other than those that correspond to a given realized treatment for each equation in the first stage. This involves
excluding some control variables from a first stage that are included in a second stage, which is usually bad
practice but can be done when there is strong theoretical justification for the exclusions. For instance, Carneiro,
Heckman, and Vytlacil (2011) impose such a restriction on variables from the future affecting choices in the
present.
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Table 4: Effects of Dorm Assignments

(1) (2) (3) (4) (5) (6)
OLS OLS OLS IV IV IV

Panel 1: Effects on Ideas

StartUp Dorm 0.015 0.032 0.045 0.017 0.029 0.034
(0.015) (0.025) (0.025) (0.025) (0.044) (0.044)

Female x StartUp Dorm -0.035 -0.046 -0.024 -0.034
(0.031) (0.031) (0.052) (0.052)

Coed Dorm 0.015 0.090 -0.019 -0.040 -0.020 -0.029
(0.011) (0.014) (0.019) (0.040) (0.077) (0.076)

Female x Coed Dorm -0.133 0.038 -0.028 -0.022
(0.014) (0.023) (0.088) (0.086)

1st Stage F-stat 299.247 50.241 50.524
Mean of DV 0.232 0.232 0.232 0.232 0.232 0.232

Panel 2: Effects on Intentions

StartUp Dorm 0.046 0.062 0.082 0.006 -0.009 -0.002
(0.016) (0.026) (0.026) (0.028) (0.047) (0.046)

Female x StartUp Dorm -0.035 -0.046 0.020 0.012
(0.033) (0.032) (0.056) (0.055)

Coed Dorm 0.032 0.144 0.003 -0.043 0.009 -0.004
(0.012) (0.015) (0.019) (0.042) (0.080) (0.077)

Female x Coed Dorm -0.199 0.011 -0.078 -0.079
(0.015) (0.023) (0.092) (0.089)

1st Stage F-stat 299.247 50.241 50.524
Mean of DV 0.275 0.275 0.275 0.275 0.275 0.275

Extra controls No No Yes No No Yes
Observations 6919 6919 6919 6919 6919 6919

Notes: Linear probability models for effects of dorm assignments. All IV specifications control for expected
values of simulated instruments. Robust standard errors in parentheses. Kleibergen-Paap F-stats reported for
IV specifications. Specifications with extra controls contain all controls listed in Table 1 as well as intended
major fixed effects.
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well at matching peer neighbor gender distance with out simulated instruments, with F-stats

between 30 and 130 for our instruments depending on the specification. We find a large differen-

tial effect of -39 percentage points for women relative to men (significant at the 90% confidence

level) of gender diversity on entrepreneurial intention, suggesting that gender integration sig-

nificantly contributes to the gender gap in entrepreneurial intentions. The effect of peer gender

diversity on intentions for men is statistically insignificant and positive. We see similar patterns

with point estimates for the gender gap in entrepreneurial ideation, though these fall short of

conventional standards of statistical significance. Though we are underpowered to say that

gender integration encourages male entrepreneurship and discourages female entrepreneurship,

we are powered to say that it has differentially negative effects on women compared to men on

intentions.

Table 5: Effects of Peer Gender Diversity

(1) (2) (3) (4) (5) (6)
OLS OLS OLS IV IV IV

Panel 1: Effects on Ideas

Neighbor Gender Distance 0.010 0.009 0.022 -0.128 0.006 0.010
(0.014) (0.023) (0.023) (0.106) (0.172) (0.169)

Female x Neighbor Gender Distance 0.000 -0.005 -0.248 -0.244
(0.029) (0.029) (0.216) (0.212)

1st Stage F-stat 130.161 34.519 34.614
Mean of DV 0.232 0.232 0.232 0.232 0.232 0.232

Panel 2: Effects on Intentions

Neighbor Gender Distance 0.055 0.067 0.084 -0.025 0.193 0.197
(0.015) (0.025) (0.024) (0.111) (0.182) (0.177)

Female x Neighbor Gender Distance -0.022 -0.035 -0.406 -0.390
(0.030) (0.030) (0.228) (0.221)

1st Stage F-stat 130.161 34.519 34.614
Mean of DV 0.275 0.275 0.275 0.275 0.275 0.275

Extra controls No No Yes No No Yes
Observations 6919 6919 6919 6919 6919 6919

Notes: Linear probability models for effects of peer gender distance of next-door neighbors. All IV specifications
control for expected values of simulated instruments. Robust standard errors in parentheses. Kleibergen-Paap
F-stats reported for IV specifications. Specifications with extra controls contain all controls listed in Table 1 as
well as intended major fixed effects.

Last, we discuss effects of academic peer diversity at the roommate level, which are shown

in Table 6. We consider each academic trait of roommates separately, such that each coefficient

is from a separate model. It is noteworthy that we do a worse job (as evidenced by F-statistics

between 15 and 30) of predicting roommate academic traits than we do at predicting neighbor
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gender. This is likely because room genders are fixed ex ante before students are placed in them,

such that our simulated instruments will closely match a student’s neighbors’ genders if we do

well at simulating their room assignment. To match a student’s roommates’ academic traits,

we need to do well at simulating the student’s room and their roommates’ rooms, effectively

requiring us to “guess right” for room assignments for two students instead of one. Despite

our relatively weak instruments, we identify statistically significant (90th or 95th percentile

depending on the inclusion of controls) effects of roommate verbal ACT distance on ideation of -3

percentage points. We find statistically insignificant positive effects of both ACT score distances

on intentions and of math score distances on ideation, with insignificant negative effects on both

outcomes from roommate STEM distance. While many of our effects are imprecisely estimated,

we note that roommate verbal distance not only has the most statistically significant effects,

but it also likely has the most policy relevance, as ACT verbal scores vary substantially more

(8.9 SD) in our sample than ACT math scores (3.7 SD) or STEM intended major (0.50), as

shown in Table 1.

Due to a lack of statistical power, we do not estimate effects of peers at further distances than

roommates for academic diversity, and next-door neighbors for gender diversity. Our exclusion

of peer traits at further distances implicitly constrains their effects on outcomes to zero. If they

do affect outcomes, they will bias the effects of nearer peers in the opposite direction of their

true effects because the traits of far peers are negatively correlated (mechanically) with the

traits of near peers.17 This mechanical negative correlation is small and is unlikely to produce

large bias even if effects of distant peers are comparable in magnitude to effects of nearby peers,

which is itself unlikely. Importantly, even if these effect estimates are biased in a strict sense,

our results still give policy-relevant total effects of peer assignments that capture both the direct

and indirect effects of the peer trait at a given distance on outcomes via reducing (on average)

the level of the trait among peers at further distances. We leave estimation of treatment effects

of further peers to future work that is able to leverage more random variation in distant peers

than we are able to with our identification strategy in our institutional context.

17This is easy to imagine in a very small dorm. If there is a single STEM individual, it follows that their
roommate has no STEM neighbors. Part of the effect of having a STEM roommate is thus to remove any chance
at a STEM neighbor.
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Table 6: Effects of Peer Academic Diversity

(1) (2) (3) (4)
OLS OLS IV IV

Panel 1: Effects on Ideas

Roommate STEM Distance 0.011 0.009 -0.024 -0.081
(0.011) (0.011) (0.272) (0.268)

1st Stage F-stat 17.393 17.194
Roommate ACT Math Distance 0.003 0.002 0.022 0.025

(0.002) (0.002) (0.034) (0.033)
1st Stage F-stat 26.845 26.748
Roommate ACT Verbal Distance -0.000 -0.001 -0.032 -0.030

(0.001) (0.001) (0.016) (0.016)
1st Stage F-stat 16.015 16.165
Mean of DV 0.228 0.228 0.229 0.229

Panel 2: Effects on Intentions

Roommate STEM Distance 0.014 0.012 -0.272 -0.314
(0.011) (0.011) (0.294) (0.281)

1st Stage F-stat 17.393 17.194
Roommate ACT Math Distance 0.005 0.002 0.032 0.032

(0.002) (0.002) (0.035) (0.034)
1st Stage F-stat 26.845 26.748
Roommate ACT Verbal Distance 0.001 -0.001 0.015 0.015

(0.001) (0.001) (0.016) (0.016)
1st Stage F-stat 16.015 16.165
Mean of DV 0.273 0.273 0.272 0.272

Extra controls No Yes No Yes
Observations 6627 6627 6533 6533

Notes: Linear probability models for effects of peer academic distances of next-door neighbors. All IV
specifications control for expected values of simulated instruments. Robust standard errors in parentheses.
Kleibergen-Paap F-stats reported for IV specifications. Specifications with extra controls contain all controls
listed in Table 1 as well as intended major fixed effects. Individuals with no roommates are dropped for all
specifications, and those with no simulated roommates are dropped from IV specifications.
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5. Conclusion

We find evidence that peer diversity, specifically with respect to neighbor gender and roommate

verbal skills, is associated with lower entrepreneurial proclivity among students in a specific

large public research university. We do not find statistically significant effects of STEM major

diversity or peer math skill diversity. At the dorm level, we find no evidence for effects of

either dorm entrepreneurial culture or gender integration, though gender-integrated dorm point

estimates are consistent with the statistically significant effects of neighbor gender diversity on

entrepreneurial intentions.

Our results are somewhat at odds with some existing literature that suggests exposure

to course diversity increases entrepreneurship (Lazear, 2005) and diversity in teams enhances

creativity and innovation (Wang, Kim, and Lee, 2016; Bolli, Renold, and Wörter, 2018; Schubert

and Tavassoli, 2020). Our study is particularly strong in terms of identification of treatment

effects because of the explicit randomization used in room assignments, but we have very limited

qualitative information on the mechanisms whereby residential peers affect one another in our

setting. It is possible that high diversity reduces or changes the nature of student interactions,

reducing information sharing and social encouragement that are conducive to entrepreneurship.

It may also be that entrepreneurs actually benefit more from specialization than from diversity

(Junkunc and Eckhardt, 2009; Khoshimov, Eckhardt, and Goldfarb, 2019). Qualitative research

that investigates the nature of effective and ineffective peer interactions would shed light on this.

Our study contributes to the discussion of optimal room assignments in universities (and

other settings, such as office spaces). Existing work has found that poor-performing peers neg-

atively affect the academic success of their roommates (Sacerdote, 2001), with effects especially

large for their effects on medium-performing peers (Zimmerman, 2003). Other work suggests

that exposure to heritable diversity in roommates increases subsequent interracial interactions

(Carrell, Hoekstra, and West, 2019). Our work considers entrepreneurship as an outcome, and

suggests a role for clustering of students on academic skills and gender. Because the peer assign-

ments that we find to be important for entrepreneurship do not overlap with those relevant for

academic outcomes or hereditary inclusion, we consider our results to complement these other

considerations of administrators in the question of optimal university dorm room assignments,

which undoubtedly include an intention to improve all of these domains. A particularly relevant

example of existing room assignment policies is that of learning communities. Many learning

30



communities on the University of Wisconsin-Madison’s campus (and others) cluster students

based on their academic interests (such as StartUp at the University of Wisconsin-Madison)

while others cluster students on gender and academic interests, such as WISE (Women in

Science and Engineering). Our results suggest that increasing the number of such learning

communities could play a substantial role in increasing campus entrepreneurship and reducing

entrepreneurial gender gaps.
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Appendix A: Tiebreaker Randomization Check

The key to our research design is the randomization of room assignment tiebreakers, which are

used in conjunction with student preferences to assign students to rooms. If tiebreakers are not

actually random, our identification strategy is not valid. We note that Housing staff has told us

that tiebreakers are random, while also telling us that their official policy is that staff judgment

in assignments trumps any deference to the random allocation mechanism. It therefore seems

to us that Housing has no incentive to doctor the random numbers to benefit some groups over

others, even if they did have an interest in giving certain groups particularly advantageous room

assignments.

To address the possibility of nonrandom tiebreaker numbers, we perform randomization

checks by regressing random tiebreakers on the observed student characteristics described in

Table 1. We report β coefficients from year-specific regressions of the form

ri = Xiβ + ϵi,

where we test the null hypothesis that β = 0 for every element of Xi other than the constant.

Results are shown in Table A.1. Unsurprisingly, we find no evidence of randomization

failures; there is one coefficient that is significant at the 95% confidence level and 5 that are

significant at the 90% confidence level. Considering there are 48 coefficients presented, the

number of statistically significant associations is consistent with randomization of tiebreakers.

We are further encouraged that the statistically significant effects differ across years, which

would not occur if random numbers were systematically biased upward or downward for certain

student populations.
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Table A.1: Tiebreaker Randomization Check

2016 2017 2018 2019
(1) (2) (3) (4)

Female -5.905 -51.91 37.73 -23.36
(131.0) (143.4) (147.4) (168.0)

STEM -41.78 11.59 136.7 -283.5∗

(132.3) (143.2) (148.9) (164.1)
ACT Math 13.78 4.638 -35.98 19.41

(20.62) (23.26) (22.35) (24.75)
ACT Verbal -0.368 3.323 8.424 -0.507

(8.728) (7.935) (9.968) (10.65)
Nontraditional -168.2 -302.0 272.1 579.4

(503.6) (477.9) (789.3) (757.2)
In-State 134.9 141.1 -39.96 330.3∗

(138.4) (153.6) (157.7) (182.0)
First Generation 41.40 16.55 152.5 -102.1

(168.2) (188.3) (176.3) (220.3)
Asian -91.90 448.0 616.6∗ -291.4

(332.9) (390.7) (373.4) (398.2)
Black 963.6∗∗ -547.0 259.2 764.1

(476.1) (561.6) (668.4) (956.3)
Hispanic 32.78 255.8 -36.78 -110.2

(407.4) (422.1) (442.4) (505.9)
White 266.7 328.6 548.8∗ 0.155

(241.6) (286.6) (286.8) (317.8)
International 413.3 103.6 186.1 385.6

(319.3) (373.5) (363.4) (400.4)
Constant 4246.4∗∗∗ 4272.6∗∗∗ 4762.7∗∗∗ 4162.1∗∗∗

(710.7) (784.1) (794.8) (888.1)
Observations 2116 1860 1571 1277

Notes: Predictive associations between baseline student characteristics and tiebreakers, by year.
∗, ∗∗, and ∗∗∗ denote significance at the 90, 95, and 99% confidence levels.
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Appendix B: Room Assignment Monotonicity

As discussed in Section 3.3., a threat to identification is monotonicity violations for our simu-

lated instrumental variables. Differences between simulated treatment assignments and actual

treatment assignments arise either because some students are not assigned according to the

mechanism we identify as best-fitting the data, and because some students are assigned in this

way for their summer assignments, but request room changes for reasons such as conflict with

roommates. The first group, students our assignment mechanism makes mistakes on, are likely

individuals who either have unobserved room priorities in the rooms they receive (always takers

or never takers), or they are random mistakes for whom the compliers-defiers assumption is

likely particularly valid.

The second group of students who dislike their room(mate) assignment and request a new

room are more problematic. It is possible to imagine a particularly cantankerous type of student

who, upon being assigned a roommate of any type, takes issue with their roommate and requests

a move. If such individuals have abnormal treatment effects from assignment to peers (for

instance, if they are antisocial and have opposite signed effects from the general population for

all peer traits), this will contribute to bias in treatment effect estimates if they are able to move

to opposite-type peers when they request a room switch.

We have two arguments for monotonicity violations from cantankerous students being un-

likely to invalidate our estimates. First, per interviews with Housing staff, students who request

room moves are not allowed to request any particular alternative room(mate), they are placed

near their old room in an open spot if one is available. It follows that they are not systematically

likely to receive the opposite peer exposure from their initial assignment, except for the small

mechanic effect from their prior room being unable to be their new room. It follows that even

cantankerous students who reject initial assignments are often not defiers with respect to their

peer or dorm treatment assignments.

Even for the subset of these students who are defiers, the compliers-defiers version of the

monotonicity assumption requires only that there be sufficiently many compliers who share

treatment effects with defiers to cancel them out. This means we need individuals who relate

to their peers similarly to the way individuals who request room changes do in the complier

population. The initial assignment takeup rate is informative about the number of defiers there

may be in our population, as we are primarily concerned about students rejecting their initial
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assignment and receiving a different realized assignment (we are not concerned about students

having an initial assignment that doesn’t match our simulated assignments). Statistics on room

take-up are shown in Table B.1. From this table, it looks like room assignment rejections are

extremely rare at just over 2% of assignments. If every single individual who rejects their initial

assignment has abnormal effects from exposure to peers, it is sufficient for us for the most

similar individuals among the great mass of compliers to have overlapping treatment effects.

Given that there appear to be at least 50 compliers for every defier, we feel confident that this

overlap condition is satisfied.

Table B.1: Initial Room Assignment Take-up by Student Type

Room Takeup Rate
(1)

Total 0.978
Female 0.977
STEM 0.980
Nontraditional 0.962
In-State 0.982
First Generation 0.972
Asian 0.976
Black 0.951
Hispanic 0.987
White 0.979
Other Race 0.980
International 0.983
No Roommate 0.955
Random Room Assignment 0.980
Random Roommate Assignment 0.966
Observations 6919

Notes: Percentage of students of each type whose actual room is the same as their summer assignment.
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