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1 Introduction

Treatment variables of social and empirical interest often come in multiple varieties. For in-

stance, years of education encompasses educational time investments across subjects and levels

of schooling, years of work experience encompasses time investments across a variety of tasks

which develop different skills, and healthcare expenditures encompass a wide variety of medical

services. When these differing components of composite treatments have different treatment

effects, models which describe single effects of composite treatments on outcomes are misspeci-

fied, and the stable unit treatment value assumption (SUTVA) of Rubin (1974) is violated. This

paper describes conditions under which standard instrumental variables (IV) methods identify

convex weighted averages of unobserved treatments’ effects, describes an alternative factor-

augmented treatment effects model that allows IVs to place negative weights on unobserved

treatments, and applies the new method to estimation of returns to college using the NLSY79.

For some applications involving treatments with unobserved treatment heterogeneity, esti-

mated composite treatment effects may equally weight all component treatments, providing an

estimate of the average effect of component treatments. In other cases, the estimated com-

posite treatment effect may be inherited from a single unrepresentative component, which may

not even share the sign of the average effect. Finally, if the variation in treatment used to

estimate effects shifts individuals between unobserved component treatments sufficiently of-

ten, estimated composite treatment effects will reflect differences in effects between component

treatments rather than a positively-weighted average effect of component treatments relative to

nontreatment.

I begin with a theoretical discussion of standard instrumental variables methods when treat-

ments come in multiple unobserved varieties. I show that instruments which shift individuals

into (but never out of or between) multiple versions of treatment identify convex weighted aver-

ages of unobserved treatments’ effects, essentially extending the insights of Imbens and Angrist

(1994) and Heckman and Pinto (2018) to the setting with unobserved treatment heterogene-

ity. I show similar results for the case in which instruments shift relatively few individuals with

non-extreme treatment effects between treatment varieties, extending the insights of De Chaise-

martin (2017) to the same setting.

In addition to results on standard methods, I also develop a novel factor-augmented treat-

ment effects (FATE) model that defines treatment effects in terms of a small number (such as

2



one) of particularly well-behaved instruments, while allowing other instruments to contribute to

estimation. The method estimates a convex average of effects of unmodeled component treat-

ments without requiring observation of the component treatments. The key insight motivating

the method is that the varieties of treatment that individuals are shifted into by different instru-

ments are outcome invariant, while the effects of unobserved varieties of treatment on outcomes

are instrument invariant. This suggests a factor structure for just-identified IV treatment effect

estimands wherein IVs work through a lower dimensional number of unobserved treatments to

affect a large number of outcomes in logically consistent ways. When instruments are assumed

to affect outcomes through a single treatment variety, this model is identical to that of 2SLS

with multiple instruments, whereas it is identifical to just-identified IV for multiple instruments

when the number of treatment varieties is assumed to be equal to the number of instruments.

I use the FATE model to estimate returns to college over the lifecycle using the NLSY79.

I find that college attendance associated with local labor market conditions produces a higher

wage return profile than college attendance associated with local college proximity. Because

local wage variation likely affects college attendance by making the outside option more or

less attractive, it is reasonable to think that it does not shift individuals between versions

of treatment, suggesting these (high) return estimates are more likely to be valid. It follows

that returns to college in the literature that use cost-shifters, which may shift individuals into

low effort college because of income effects, may negatively weight high-return types of college

and understate true returns to college on average. Comparing the estimated factor-augmented

treatment effects to those of just-identified IV shows reductions in standard errors, consistent

with the intuition of FATE allowing multiple instruments to work together to estimate treatment

effects (as in the extreme case of multiple-IV 2SLS).

Finally, I contribute to the literature on economic applications for factor models. Much of

the existing work along these lines uses factor models to extract particularly relevant variation

in data with multiple outcomes, where the multiple outcomes often include auxiliary measures

such as test scores (Hansen, Heckman, and Mullen, 2004; Cunha, Heckman, and Navarro, 2005;

Heckman, Stixrud, and Urzua, 2006; Jiang, 2019) or repeated outcomes of interest in panel

data (Bai, 2009). In these cases, the main use of factor models is to extract common sources of

variation across outcomes to define otherwise unobserved types of individual-level heterogeneity

that vary in their effects on outcomes. These factors act as controls in equations of interest to

address omitted variable bias and enable identification of treatment effects of other observed

3



variables. My factor model leans on this past work in the estimation procedure, but differs

substantially in intuition. Rather than extracting particularly meaningful variation in data to

identify factors that act as control variables, my factor model extracts particularly meaningful

variation in estimated marginal effects to determine their structural interpretation.

The plan of the paper is as follows. Section 2 describes identification of treatment effects

for standard IV methods and introduces a net uniform unordered monotonicity condition under

which the IV estimand is a positively-weighted average of component treatment effects. Section

3 describes the factor-augmented treatment effects model. Section 4 describes the data for the

application on returns to college. Section 5 discusses model estimates from the factor-augmented

treatment effects model and their interpretation and relationship to those of multiple instrument

2SLS and just-identified IV. Section 6 concludes.

2 IV Estimands under Unobserved Treatment Heterogeneity

In this section, I will describe conditions under which standard IV methods identify meaning-

ful average effects of treatments with unobserved heterogeneity. In the context of the Rubin

(1974) causal model (RCM), unobserved treatment heterogeneity constitutes a violation of the

Stable Unit Treatment Value Assumption, which requires there to be only one version of each

treatment. I will start by presenting the problem using RCM potential outcome language and

notation and going through some assumptions that will be maintained in subsequent sections.

Next, I will present sufficient conditions for treatment effect identification in the case where

treatments are heterogeneous and their effects are homogeneous, wherein unobserved defier and

complier treatments will play similar roles to those of defier and complier individuals in the

more familiar case of homogeneous treatments with heterogeneous effects. Afterward, I will

allow for both unobserved treatment heterogeneity and treatment effect heterogeneity with a

strict monotonicity assumption similar to those of Imbens and Angrist (1994) and Heckman

and Pinto (2018). I close the section by relaxing this monotonicity assumption for cases when

treatments and their effects are heterogeneous by applying the insights of De Chaisemartin

(2017) to allow for compliers (for each version of treatment) to cancel out defiers (for the same

version of the treatment) who share their treatment effects.
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2.1 Potential Outcomes with Unobserved Treatment Heterogeneity

I work within a version of the Rubin (1974, 1990) causal model similar to that used by Imbens

and Angrist (1994), with reference as well to Heckman (1990), Angrist and Imbens (1991), and

Angrist, Imbens, and Rubin (1996). The main innovation of this paper concerns an observed

composite treatment for individual i, Di, that is composed of L unobserved mutually exclusive

component treatments such that Di =
∑L

`=1Di`, with the vector Di = (Di0, Di1, ..., DiL)

denoting i’s treatment status for each version of the treatment, with Di0 denoting the untreated

state. Because component treatments are binary and mutually exclusive, it follows that Di is

binary as well.

I assume that the outcome Yi is observed with Yi =
∑L

`=0Di`Yi(`), where Yi(`) gives the

value of Yi(Di) when Di` = 1 and Dim = 0 for all m 6= `. We observe Yi(0) for individuals

that do not select treatment, but not those that do, as is standard in the potential outcomes

framework. However, with unobserved treatment heterogeneity, Di = 1 is not sufficient to

determine the value of Di`, other than to bound ` at ` > 0. It follows that not only do we not

observe Yi(`)|Di = 0 for any i or ` > 0, but we also do not observe Yi(`)|Dim = 1 for any i for

` 6= m.1 This muddling of potential outcomes for treated individuals is the central empirical

challenge I address in this paper. Not only is the single composite treatment effect not observed

for any individuals, it not well-defined. We instead are left with multiple component treatment

effects, Yi(`)−Yi(0), which can be differenced to define unobserved treatment switching effects,

Yi(`)− Yi(`′) for all ` 6= `′.

In the language of the Rubin causal model, unobserved treatment heterogeneity constitutes

a violation of the stable unit treatment value assumption (SUTVA). In randomized controlled

trials, random assignment to treatment ensures that E[Yi(`)|Di` = 1] = E[Yi(`)|Dim = 1] for all

` and m, including the cases where ` = 0 or m = 0. Experimental control efforts are intended

to ensure that Di = Di` for a given ` for all individuals in an observed treatment arm. In other

words, the administration of the treatment is explicitly designed to hold equal between treated

individuals all variations that are expected to substantively alter the nature of the treatment.2

The control of the trial ensures identification of treatment effects that are entirely driven by a

1More precisely, we do observe Yi(`) for individuals who choose component treatment `, but I do not know
the ` for which we are observing Yi(`).

2Even well-designed experiments differ in this respect. Variation in subtle priming from the outward af-
fect or word choices of research staff administering a medical treatment might not complicate treatment effect
identification for treatments of physical ailments but may do so for treatments of psychological ailments.
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single component treatment, while the randomization ensures that the effects can be estimated

via comparisons of treated and untreated individuals.

In observational studies such as the application below on the wage returns to college, treat-

ment assignments are not explicitly randomized, individuals who select treatment are not nec-

essarily representative of the population, and versions of treatment received by individuals are

not controlled. To address the lack of randomization of treatment, it is common for researchers

to make use of instrumental variables, variables which are assumed to be as-good-as-random

that shift individuals into (or out of) treatment without otherwise affecting outcomes. The im-

plications for treatment effect estimation of selected subpopulations of individuals responding

to instrumental variables are well-understood and commonly addressed in empirical work. The

implications of individuals responding to instrumental variables by selecting particular unmod-

eled varieties of treatment are less well-understood, but produce similar problems, as I will show.

This is especially of interest for estimates of returns to college, considering the large literature

detailing differences in effects of college on outcomes depending on variations in treatment such

as the subjects of study (Hastings, Neilson, and Zimmerman, 2013; Kirkeboen, Leuven, and

Mogstad, 2016) or the quality of the college (Black and Smith, 2006; Dillon and Smith, 2020).

In addition to observing the outcome and composite treatment, I assume that an instru-

mental variable Zi ∈ Z is observed as well, composite and component treatments Di(z) and

Di`(z) representing random variables that give the value of each respective treatment if Zi = z.

I assume that (Yi, Di, Zi) is observed for a random sample of the population. I assume that

instrumental variables satisfy several conditions, which I will detail.

Condition 1 (Independence). Let Z be a random variable such that Di`(z) is independent of

Zi for all ` = 0, 1, ..., L and all z ∈ Z.

Condition 1 would be sufficient to identify the effect of Zi on Di` if Di` were observed. It follows

from this condition and the definition of Di that Di is independent of Zi, further implying that

the effect of Zi on the composite treatment, Di, is identified as well.

In addition to the multiple treatments version of independence just given, I also present a

multiple treatments version of exclusion.

Condition 2 (Exclusion). Let Z be a random variable such that Y (`) is independent of Zi for

all ` = 0, 1, ..., L and all z ∈ Z.

The standard composite treatment version of exclusion is likely to be violated in settings with
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SUTVA violations, while the multiple treatment version allows will not be for well-chosen instru-

ments.3 This is readily seen in the regression-based treatment effects model with homogeneous

effect λ` for treatment `,

Yi = λ0 +

L∑
`=1

Di`(Zi)λ` + εi

= λ0 + 0Di(Zi) + (εi +
L∑

`=1

Di`(Zi)λ`),

(1)

where the term
∑L

`=1Di`(Zi)λ` is in the error term in the homogeneous treatment version of

the model in the second line. The Yi(1) outcome is clearly dependent on Zi via channels other

than Di, unless the instrument only ever induces a particular type of treatment (such as in the

case of a controlled experiment, or an intent-to-treat instrument in the same context).

Conditions 1 and 2 imply that the effect of Zi on Yi is identified in addition to the effect of

Zi on Di. The effect of Zi on Yi, defined for a comparison of two points (z, z′) in the support

of Z, is given by

E[Yi|Zi = z]− E[Yi|Zi = z′]

=E[
L∑

`=1

Di`(z)Yi(`) + (1−
L∑

`=1

Di`(z))Yi(0)|Zi = z]

−E[
L∑

`=1

Di`(z
′)Yi(`) + (1−

L∑
`=1

Di`(z
′))Yi(0)|Zi = z′].

(2)

Conditions 1 and 2 imply that this is equal to

L∑
`=1

E
[
(Di`(z)−Di`(z

′))(Yi(`)− Yi(0))
]

=

L∑
`=1

Pr[Di`(z)−Di`(z
′) = 1]E[Yi(`)− Yi(0)|Di`(z)−Di`(z

′) = 1]

−
L∑

`=1

Pr[Di`(z)−Di`(z
′) = −1]E[Yi(`)− Yi(0)|Di`(z)−Di`(z

′) = −1].

(3)

The IV estimand for the effect of Di on Yi for instrument comparison z, z′ is obtained by dividing

3Angrist, Imbens, and Rubin (1996) describe SUTVA as as ruling out treatment spillovers, while modeling
outcomes, treatment assignments, and instruments for all individuals as vectors. The arguably simpler presen-
tation in Imbens and Angrist (1994) works, like this paper, at the individual level and makes no mention of
SUTVA, implicitly ruling out problematic spillovers and other forms of unobserved treatment heterogeneity with
their independence assumption (which includes what I and others call exclusion).
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the average effect of Zi on Yi by the average effect of Zi on Di,

πz,z′ =
E[Yi|Zi = z]− E[Yi|Zi = z′]

P (z)− P (z′)
, (4)

where P (z) = E[Di|Zi = z] gives the probability of treatment for instrument value z ∈ Z. There

are three potential problems with this estimand even when conditions 1 and 2 are satisfied. In

brief, problems arise with this estimand if instruments do not appreciably affect composite

treatment status, if instruments shift some individuals into treatments and some out, or if

instruments shift individuals into some component treatments and out of others.

First, this estimand is indeterminant or undefined if P (z) − P (z′) = 0. This is addressed

with the usual testable condition that the instrument has an appreciable effect on observed

composite treatment status,

Condition 3 (Relevance). Let Z be a random variable such that P (z) is a nontrivial function

of z.

It follows from condition 3 that the instrument must also have an effect on at least one com-

ponent treatment, such that the unobserved value P`(z) = E[Di`|Zi = z] is also a nontrivial

function of z for some value of `.

The second and third potential problems with the estimand in equation (4) involve the

negative second term. The case in which instruments shift some individuals into a homogeneous

treatment and some individuals out, with the treatment effects of those in the minority (defier

individuals) being negatively weighted is addressed by the monotonicity condition of Imbens and

Angrist (1994), which constrains this term to zero by assuming all individuals respond to the

instrument in the same way. The closely-related problem presented by unobserved treatment

heterogeneity is that instruments might shift individuals into some versions of treatment and

out of others, with the treatment effects of treatments in the minority (defier treatments) being

negatively weighted. Multiple sufficient conditions of varying plausibility in applications address

this second concern. I will begin with less plausible (but simpler) sufficient conditions and work

toward more plausible ones.

2.2 Heterogeneous Treatments with Homogeneous Effects

The simplest ways of addressing the problematic second term of equation (4) make assumptions

that imply that
∑L

`=1 Pr[Di`(z) − Di`(z
′) = −1] = 0 for all ` and all i (assuming without
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loss of generality that P (z) > P (z′)). An example of this approach is in Imbens and Angrist

(1994), who implicitly assume L = 1, and that instruments only shift individuals into (not out

of) treatment. I begin by considering conditions that mirror this approach in the setting of

unobserved treatment heterogeneity. First, I consider the case where each unobserved type of

treatment has homogeneous treatment effects.

Condition 4 (Homogeneous Treatment Effects). For all ` = 1, 2, ..., L, define λ` as a constant

that satisfies λ` = Yi(`)− Yi(0).

Condition 4, combined with 1 and 2, implies that the effect of Zi on Yi from equations (2) and

(3) can be rewritten as

E[Yi|Zi = z]− E[Yi|Zi = z′] =

L∑
`=1

(P`(z)− P`(z
′))λ`

=
L∑

`=1

I(P`(z) ≥ P`(z
′))(P`(z)− P`(z

′))λ`

−
L∑

`=1

I(P`(z) ≤ P`(z
′))(P`(z

′)− P`(z))λ`,

(5)

where I(·) is an indicator function that takes a value of unity if its argument is true and zero

otherwise.

Even with the strong assumption of homogeneous treatment effects, the IV estimand in

equation (4) can be uninformative about treatment effects. To see this, consider the example

with high-return college and low-return college as the unobserved versions of treatment, with

a randomly assigned low-return-major contingent college scholarship used as an instrument for

college attendance. If returns to high-return college are double those of low-return college and

this instrument shifts x individuals from non-college into low-return college and x individuals

from high-return college into low-return college, the IV estimand in (4) will fail to provide

information regarding returns to any type of college. In the model, this setting constitutes

L = 2 with λ2 = 2λ1 and P1(z)− P1(z
′) = −2(P2(z)− P2(z

′)), which produces a value of zero

on the right hand side of equation (5).

To avoid some versions of treatment having their effects negatively weighted in the IV

estimand, additional assumptions are required even for with treatments with constant effects and

instruments that satisfy independence, exclusion, and relevance. A simple sufficient condition
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imposes that that instrument never induces changes in unobservable intensive margin treatment

status.

Condition 5 (Uniform Treatment Responses). For all z, z′ ∈ Z, either P`(z) ≥ P`(z
′) for all

`, or P`(z) ≤ P`(z
′) for all `.

Condition 5 does for treatments with heterogeneous effects what the monotonicity condition of

Imbens and Angrist (1994) does for individuals with heterogeneous treatment effects.

If the above conditions hold, the estimand in equation (4) has a causal interpretation.

Theorem 1: If Conditions 1-5 hold, the following weighted average component treatment

effect is identified:

πz,z′ =
L∑

`=1

P`(z)− P`(z
′)

P (z)− P (z′)
λ`,

with (P`(z)− P`(z
′))/(P (z)− P (z′)) ≥ 0 for all `.

Proof. Let condition 5 hold with P`(z) ≥ P`(z
′) for all `. It immediately follows that (P`(z)−

P`(z
′))/(P (z) − P (z′)) ≥ 0 for all `. It also follows that the final term in equation (5) is zero,

and

E[Yi|Zi = z]− E[Yi|Zi = z′] =
L∑

`=1

(P`(z)− P`(z
′))λ`.

Diving both sides of (5) by (P (z)−P (z′)) shows that the weighted average component treatment

effect above can be obtained from moments of the joint distribution of (Yi, Di, Zi).

An economic model of the college attendance decision is helpful for understanding the con-

nection between unobserved treatment heterogeneity and treatment effect heterogeneity. For

clarity, consider the case of two unobserved component treatments with one observed compos-

ite treatment, such that L = 2. The discrete choice model is the same as the case where all

treatments are observed, such as in Heckman and Pinto (2018) and Mountjoy (2022). Formally,

I define individual i’s utility from treatment decision Di`(Zi) as D∗i`(Zi), defined as

D∗i0(Zi) = 0

D∗i1(Zi) = Ui1 + µ1(Zi)

D∗i2(Zi) = Ui2 + µ2(Zi),

(6)

where the utility from noncollege is normalized to zero, and individuals choose the treatment
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status that gives them the highest utility, such that

Di0(Zi) = I(D∗i1(Zi) < 0, D∗i2(Zi) < 0)

Di1(Zi) = I(D∗i1(Zi) ≥ D∗i2(Zi), D
∗
i1(Zi) ≥ 0)

Di2(Zi) = I(D∗i2(Zi) ≥ D∗i1(Zi), D
∗
i2(Zi) ≥ 0).

(7)

The assumption that all individuals are uniformly affected by instruments (µi(Zi) = µ(Zi)

for all i) is unnecessary for the methods in this paper, but permits a helpful graphical repre-

sentation of the model. Figure 1 represents the college attendance decision model in (7) with

(U1i, U2,i) drawn from a distribution that implies that each point enclosed by the ellipse contains

a common population density. The shares of the population attending each type of college at

different values of Z are given by the area inside of the ellipse representing the joint distribu-

tion of (D∗1(Z), D∗2(Z)). The three panels each consider an instrument comparison relative to a

common baseline with a relatively low college attendance rate. The instrument comparisons in

Panels B and C satisfy condition 5, while the comparison in Panel A does not.

To fix ideas, consider that Panel A shows a control group, individuals for whom Zi = z,

and a treated group who are randomly selected to receive a STEM-major-contingent college

scholarship, for whom Zi = z′. The STEM-contingent scholarship induces individuals who

would not otherwise attend college at all into STEM college (` = 1), but also induces individuals

who would otherwise attend college with a non-STEM major into STEM college. In this case,

P1(z
′) >> P1(z) with P2(z

′) < P2(z), violating condition 5. If unobserved treatment D1 has

larger (smaller) treatment effects than treatment D2, estimating effects of college using the

comparison (z, z′) will be at risk of overstating (understating) the true returns of any type of

college. Panels B and C display individuals in alternative treatment arms for whom Zi = z′′

and Zi = z′′′ which represent receipt of other randomly-assigned incentives for college that have

less-extreme compositional effects on the shares of individuals attending each type of college.

2.3 Heterogeneous Treatments with Heterogeneous Effects

There is a conceptual point to be made that a fair amount of variation in effects of observed com-

posite treatments between individuals may be attributable to variation in versions of treatment

chosen, rendering condition 4 less restrictive than it is in the usual homogeneous treatments

case. For instance, continuing with the STEM/non-STEM example above, consider the indi-
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Panel A
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D = 0

D2 = 1

D1 = 1
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D∗1
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D2 = 1

D1 = 1
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Panel C
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D∗2

D = 0

D2 = 1

D1 = 1

z

z”’

Figure 1: Instrument Comparisons with Two Unobserved Component Treatments

Notes: Graphic representations of instrument comparisons that satisfy independence, exclusion, and relevance in the context of decision model (7). Panel A shows an
instrument comparison that satisfies Heckman and Pinto’s (2018) unordered monotonicity condition, but violates uniform unordered monotonicity and net uniform unordered
monotonicity (there are more type 2 defiers than compliers). Panel B shows an instrument comparison that violates uniform unordered monotonicity, but may satisfy
net uniform unordered monotonicity with low treatment effect heterogeneity. Panel C’s instrument comparison satisfies uniform unordered monotonicity and net uniform
unordered monotonicity.
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viduals who are at the margin of non-college and STEM college, who are extremely far from

all other margins. Such individuals will generally respond to instruments (if they respond) by

attending a particular type of college, so there is no practical distinction for them between

treatment heterogeneity and treatment effect heterogeneity — they are, in the running exam-

ple, STEM-margin individuals at the margin of STEM college. However, individuals who are

close to the line D∗1 = D∗2 are at the intensive margin between types of college, such that their

returns to college cannot be completely described by attributing to them individual-specific

returns; they may choose either type of college and will have different outcomes depending on

their choice.4 It follows that while condition 4 is less restrictive than the corresponding assump-

tion with homogeneous treatments, it nonetheless may fail to capture meaningful variation in

treatment effects between populations.

This section replaces conditions 4 and 5 with an alternative condition that allows for treat-

ment effect identification when unobserved component treatments have individual-level treat-

ment effect heterogeneity.

Condition 6 (Uniform Unordered Monotonicity). For all z, z′ ∈ Z, either Di`(z) ≥ Di`(z
′)

for all i = 1, 2, ..., N and all ` = 1, 2, ...L, or Di`(z) ≤ Di`(z
′) for all i = 1, 2, ..., N and all

` = 1, 2, ...L.

This condition strengthens Heckman and Pinto’s (2018) unordered monotonicity assumption to

require that all treatments respond to instruments uniformly, that is, if an instrument makes

one component treatment more likely, it must weakly make all others more likely as well. In

related work on observed treatments, Kline and Walters (2016) describe a similar condition

that restricts changes in the treatment decision to a single observed component treatment in

the presence of multiple observed varieties of treatment, while Hull (2018) describes a condition

that restricts changes in treatment decision from one of multiple observed untreated varieties

to a single observed treatment variety.

Condition 6 implies that the IV estimand in (4) has a causal interpretation as a weighted

average of effects of complier treatments on complier individuals.

Theorem 2: If Conditions 1-3 and 6 hold, the following component-weighted local aver-

4For instance, in Figure 1 many individuals along the top of the D = 0 partition when Zi = z choose treatment
1 when Zi = z′ (Panel A), but they choose treatment 2 when Zi = z′′′ (Panel C).
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age treatment effect is identified:

πz,z′ =

L∑
`=1

P`(z)− P`(z
′)

P (z)− P (z′)
E[Yi(`)− Yi(0)|Di`(z) 6= Di`(z

′)],

with (P`(z)− P`(z
′))/(P (z)− P (z′)) ≥ 0 for all `.

Proof. Let Condition 6 hold with Di`(z) ≥ Di`(z
′) for all i and all `. It immediately follows

that (P`(z)−P`(z
′))/(P (z)−P (z′)) ≥ 0 for all `. It also follows that the final term in equation

(5) is zero, and

E[Yi|Zi = z]− E[Yi|Zi = z′] =
L∑

`=1

(P`(z)− P`(z
′))E[Yi(`)− Yi(0)|Di`(z)−Di`(z

′) = 1].

Diving both sides of this by (P (z) − P (z′)) shows that the weighted average local average

component treatment effect above can be obtained from moments of the joint distribution of

(Yi, Di, Zi).

Condition 6 is quite strict. In the context of the decision model in (7), it will be satisfied in

only two narrow cases. The first is the case in which the support of Z contains only two values,

(z, z′), where P (z) = 0 or P (z′) = 0. It follows that any comparison (z, z′) trivially satisfies

a wide range of monotonicity conditions, including Condition 6.5 The second is the case in

which instruments make all treatments more or less attractive to all individuals by a constant

amount. In Figure 1, this is illustrated in Panel C, where the slope of the effect of instruments

on preferences for treatments is parallel to the unobserved decision margin, D2∗ = D∗1.6

2.4 Tolerating Defiance

It is difficult to imagine an instrument, other than treatment assignment in a randomized trial

with perfect compliance, that strictly satisfies Condition 6. For instance, exogenous college

cost shifters presumably have income effects, which may cause some individuals to switch to

less-difficult versions of college, while college distance shifters may cause some individuals to

5This amounts in practice to using an indicator I(P (Zi) = 0) as an instrument. The benefits of observing
values of Zi at which no individuals receive treatment is discussed elsewhere for the homogeneous treatment
setting, such as by Heckman (1990), Angrist and Imbens (1991), and Imbens and Angrist (1994). Treatment
assignment with perfect compliance in the case of a randomized trial falls into this case, so such settings naturally
satisfy uniform unordered monotonicity.

6Heckmand and Pinto’s (2018) unordered monotonicity condition for multiple observed treatments, in the
context of model 7, allows for the slope of the effect of instruments to be parallel to any decision margin, one
example of which is shown in Panel A of Figure 1. Uniform unordered monotonicity thus allows for 1/(L+ 1) as
many admissible slopes for the effects of instruments on treatment utilities.
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switch from whatever variety (quality, etc) of college they otherwise would have attended to

the nearby college. As in the case of homogeneous treatment monotonicity, it is intuitive that

small violations are unlikely to be particularly harmful. De Chaisemartin (2017) formalizes

this intuition and provides a weaker alternative to Imbens and Angrists’ (1994) monotonicity

assumption in the setting with homogeneous treatments. This section formalizes this intuition

in the setting with heterogeneous treatments and provides a substantially weaker alternative to

Condition 6 that is more likely to be satisfied in empirical applications.

I begin by defining component-treatment-specific versions of the compliers, defiers, always-

takers, and never-takers described by Angrist, Imbens, and Rubin (1996) and others. Con-

sidering instrument comparison (z, z′), individual i is an ` complier with if Di`(z) = 1 and

Di`(z
′) = 0, an ` defier if Di`(z) = 0 and Di`(z

′) = 1, an ` always-taker if Di`(z) = 1 and

Di`(z
′) = 1, and an ` never-taker if Di`(z) = 0 and Di`(z

′) = 0. Let Ci`(z, z
′) = 1 if individual i

is an ` complier (Ci`(z, z
′) = 0 otherwise), with the frequency of ` compliers given by Pc`(z, z

′).

Let Fi`(z, z
′) = 1 if i is an ` defier (Fi`(z, z

′) = 0 otherwise), with the frequency of ` defiers

given by Pf`(z, z
′). Allowing for the presence of defiers and assuming that conditions 1-3 hold,

the IV estimand in (4) is equivalent to

πz,z′ =

∑L
`=1 Pc`(z, z

′)E[Yi(`)− Yi(0)|Ci`(z, z
′) = 1]− Pf`(z, z

′)E[Yi(`)− Yi(0)|Fi`(z, z
′) = 1]∑L

`=1 Pc`(z, z′)− Pf`(z, z′)
.

(8)

Condition 6 sets P (F`) = 0 in this equation, producing a weighted average across treatment

varieties of complier treatment effects.

As an alternative to Condition 6, I propose a condition in which compliers exist for each

component treatment that are able to cancel out the contributions of defiers to the IV estimand.

Condition 7 (Net Uniform Unordered Monotonicity). For all z, z′ ∈ Z, there exists a P f
c`(z, z

′)

share of the population uniquely defined by Cf
i`(z, z

′) = 1 such that Cf
i`(z, z

′) = 1 =⇒ Ci`(z, z
′) =

1, P f
c`(z, z

′) = Pf`(z, z
′), and E[Yi(`)− Yi(0)|Cf

i`(z, z
′) = 1] = E[Yi(`)− Yi(0)|Fi`(z, z

′) = 1] for

all `.

Condition 7 is effectively similar to Conditions 4 and 5 holding for many unobserved subgroups

of the population, rather than for the population as a whole. It allows for some individuals to

respond to instruments by switching out of component treatment ` as long as other individuals

switch in to component treatment ` who happen to have overlapping treatment effects. Situa-

tions such as those pictured in Panel B of Figure 1 conceivably satisfy Condition 7 if treatment
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effects are nearly homogeneous, while instruments that affect treatment preferences in ways that

narrowly deviate from that pictured in Panel C likely satisfy this condition even with extreme

treatment effect heterogeneity.

To establish the causal interpretation of the IV estimand under Condition 7, I define

treatment ` surviving compliers as individuals for whom Cs
i`(z, z

′) = 1 where Cs
i`(z, z

′) =

I(Ci`(z, z
′) = 1, Cf

i`(z, z
′) 6= 1), who are present in the population with frequency P s

c`(z, z
′) =

Pr(Cs
i`(z, z

′) = 1). The following theorem defines a the IV estimand as a positively-weighted

average of a subset of treatments for a subset of individuals.

Theorem 3: If Conditions 1-3 and 7 hold, the following component-weighted local aver-

age treatment effect is identified:

πz,z′ =
L∑

`=1

P s
c`(z, z

′)

P s
c (z, z′)

E[Yi(`)− Yi(0)|Cs
i`(z, z

′) = 1], (9)

with P s
c`(z, z

′)/P s
c (z, z′) ≥ 0 for all `, where P s

c (z, z′) =
∑L

`=1 P
s
c`(z, z

′).

Proof. By the definition of P s
c (z, z′), P s

c`(z, z
′)/P s

c (z, z′) ≥ 0 if P s
c`(z, z

′) ≥ 0 for all `, which

holds because P s
c`(z, z

′) is a probability bounded by [0, 1]. Under conditions 1-3 and 7, the

reduced form effect of Zi on Yi evaluated at comparison (z, z′) given in (2) and (3) can be

expanded as

E[Yi|Zi = z]− E[Yi|Zi = z′] =
L∑

`=1

P s
c`(z, z

′)E[Yi(`)− Yi(0)|Cs
i`(z, z

′) = 1]

+P f
c`(z, z

′)E[Yi(`)− Yi(0)|Cf
i`(z, z

′) = 1]− Pf`(z, z
′)E[Yi(`)− Yi(0)|Fi`(z, z

′) = 1],

which reduces to

E[Yi|Zi = z]− E[Yi|Zi = z′] =
L∑

`=1

P s
c`(z, z

′)E[Yi(`)− Yi(0)|Cs
i`(z, z

′) = 1]

because Condition 7 requires that P f
c`(z, z

′) = Pf`(z, z
′) and E[Yi(`) − Yi(0)|Cf

i`(z, z
′) = 1] =

E[Yi(`)−Yi(0)|Fi`(z, z
′) = 1] for all `. Dividing both sides by P (z)−P (z′) yields the IV estimand,

where P (z)−P (z′) =
∑L

`=1 Pc`(z, z
′)−Pf`(z, z

′) under Conditions 1-3, as shown in equation (8).

Condition 7 implies that
∑L

`=1 Pc`(z, z
′) − Pf`(z, z

′) =
∑L

`=1 P
s
c`(z, z

′) + P f
c`(z, z

′) − Pf`(z, z
′),

with P f
c`(z, z

′) = Pf`(z, z
′), such that P (z) − P (z′) = P s

c`(z, z
′). It follows that the weighted
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average of surviver-compliers’ component treatment effects given by theorem 3 is obtained from

the joint distribution of (Yi, Di, Zi).

Several alternative assumptions are possible, which I leave to future study. For instance,

using multiple instrument comparisons (z, z′) and (z′′, z′′′) allows for the possibility that de-

fiers for one comparison are compliers for the other, which is sufficient for identification if the

well-behaved comparison is at least as common in the population. Mogstad, Torgovitsky, and

Walters (2021) describe such a condition in the case of multiple instruments with a homoge-

neous treatment. Additionally, in the case with multiple unobserved treatment varieties, it is

possible that an individual who is a defier for one treatment is a complier for another (such

individuals are the reason for complications beyond those for homogeneous treatments). If such

individuals have identical treatment effects for both versions of treatment, they are effectively

the same as always-takers, or, phrased differently, they cancel out their own defier contribution

to the estimand with their complier contribution to the estimand.7 The next section covers a

setting when multiple instrumental variables are available to a researcher and only some satisfy

the conditions described in this section.

3 Factor-Augmented Treatment Effects

In this section, I describe identification and estimation of wage returns to college using a novel

factor-augmented treatment effects model that leverages instruments that violate the uniform

treatment responses condition above (and therefore also violate uniform unordered monotonic-

ity) at the cost of a homogeneous treatment effects assumption on the unobserved component

treatments. The model imposes a factor structure on unobserved treatments and their effects,

allowing for K instruments to work through L ≤ K weighted averages of unobserved compo-

nent treatments to affect J lifecycle wage outcomes.8 An intuitive interpretation of the model

is that it produces data-driven lower-dimensional index variables for instruments, where each

instrument’s contributions to indexes are determined by its associated treatment effects across

multiple outcomes. When L = 1, the model’s treatment effect estimand for each outcome col-

lapses to the 2SLS estimand. When L = K, the model’s treatment effect estimand for each

7Selection on gains suggests some plausibility to this case. Individuals who are at the margin of two different
treatment statuses may be marginal specifically because their treatment effects are similar.

8Though I consider a single outcome over many time periods in this application, the method described is not
restricted to panel data.
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outcome for unobserved factor ` collapses to the just-identified IV estimand for instrument k = `

for outcome j while including all other IVs as controls.

I assume that data is generated from the following parametric model of wages (Yij for time

periods j = 1, 2, ..., J) and unobserved component treatments (Di` for treatment components

` = 1, 2, ..., L),

Yij = Xiαj +

L∑
`=1

Di`λ`j + ξij

Di` = Xiγx` +
K∑
k=1

zikγk` + ui` ∀ ` = 1, 2, ..., L.

(10)

Xi contains an N × R vector of controls, and each N × 1 instrument zik ⊂ Zi has marginal

effect γk` on unobserved component treatment `, while λ`j is the marginal effect of component

treatment Di` as in the homogeneous treatment effects case in the preceding section. If we

observed the component treatments, we could estimate model (10) via 2SLS as long as there

are at least as many instruments as component treatments (K ≥ L).

We do not observe Di` for ` = 1, 2, ..., L, but we do observe Di. It follows that we can

estimate the following slightly unconventional IV model,

Yij = Xiβj +

K∑
k=1

zikγkπkj + εij

Di = Xiγx +
K∑
k=1

zikγk + ui,

(11)

where πkj is equivalent to the just-identified IV estimand of instrument k for outcome j when

including all other instruments as controls, and γk is the marginal effect of zik on Di. Sub-

stituting the unobserved first stage into the unobserved second stage in model (10) gives an

equivalent observed second stage of,

Yij = Xi(αj +

L∑
`=1

γx`λ`j) +

K∑
k=1

zikγk

L∑
`=1

γk`
γk
λ`j + (ξij +

L∑
`=1

ui`λ`j)

= Xiβj + Ziγθλj + εij ,

(12)

where Zi = [zi1, zi2, ..., ziK ], γ = diag([γ1, γ2, ..., γK ]), θ = [θ1, θ2, ..., θK ]′, with θk = [θk1, θk2, ..., θkL]

and θk` = γk`/γk, and λj = [λ1j , λ2j , ..., λLj ]
′. The reduced form coefficient on Zi is composed
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of γ (which is identified from the first stage) and a weighted average of unobserved treatments’

effects, θλj .

Comparing equation (12) with the second stage in model (11) reveals that the just-identified

IV estimand for outcome j using instrument k has a factor structure, πkj = θkλj , where in-

strument k places outcome-invariant weights, θk, on instrument-invariant component treatment

effects, λj . The definition of θk` and the constraint Di =
∑L

`=1Di` implies that
∑L

`=1 θk` = 1,

so the weights instrument k places on unobserved factors must sum to one. The identification

of treatment effects is generally achieved via additional restrictions on θ, some of which result

in familiar estimands as we will see in the next subsection.

3.1 Identification of Component Effects

To establish identification conditions for the factor-augmented treatment effects model, I make

use of multiple outcomes and arrange each πkj into a K × J matrix π. The factor structure on

instrument-specific treatment effects across many outcomes in (12) implies that

π = θλ, (13)

where the K × L matrix of weights instruments place on component treatments, θ, is defined

as above and the L× J matrix of component treatment effects across outcomes is given by λ =

[λ1, λ2, ..., λJ ]. A barrier to identification, common to factor models, is that π = θλ = θAA−1λ

for an arbitrary invertible L× L matrix A, so the factors and their weights are not separately

identified even with many instruments and outcomes.

A has L2 free elements, so we require at least L2 restrictions to identify the model. Unlike

many uses of factor models where the factors are effectively used as control variables, such as Bai

(2009), it is necessary for the current method that we preserve the economic interpretation and

scale of the treatment effect parameters. This adds some complications to identification, as many

restrictions that will formally secure identification will nonetheless obscure the interpretation of

model estimands. To emphasize this, I denote by (θr, λr) the component weights and component

treatment effects that satisfy identification restrictions. Even in cases where all instruments are

valid and πj can be interpreted as a weighted average of unobserved treatments’ effects (as in

Theorem 1), it does not obviously follow that λrj is a weighted average of unobserved treatments’

effects for all restrictions that formally secure identification of the model.
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I propose the following restrictions for the model (though others are possible). First, I

impose the normalization

θr =



IL

θrL+1

...

θrK


, (14)

which effectively defines the first L component treatments in terms of the first L instruments.

This restriction will ensure interpretability of λr` by tying it closely to the just-identified IV

estimand for instrument k = `. Because Di =
∑L

`=1Di` and the weights instruments place on

component treatments are defined as θk` = γk`/γk, it follows that
∑L

`=1 θk` = 1. I therefore

impose that

L∑
`=1

θrk` = 1. (15)

Together, I describe L2 +K −L restrictions, which is more than the formal requirement of L2.

These restrictions clearly define the treatment effect estimands λr while also imposing econom-

ically meaningful restrictions on the weights instruments place on unobserved treatments.

The relationships given in (13), (14), and (15) provide KJ , L2, and K − L equations,

respectively, where the first L restrictions in (15) are redundant given the restrictions in (14).

Meanwhile, there are KL parameters in θr and JL in λr. It follows that identification is achieved

if

L2 +KJ +K − L ≥ JL+KL,

where solving for L when K >L yields

(K,J + 1) ≥ L, (16)

while the inequality is satisfied for any J if K = L. This expression defines the required

number of outcomes and instruments for identification of a model with L unobserved component

treatments.

It remains to be shown that the identified parameter λr defines a well-behaved treatment
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effect. I show that λr is a weighted average of unobserved component treatments even when

some instruments violate uniform treatment responses.

Theorem 4: If the model in (10) describes the data-generating process with L unobserved

component treatments where L is known and there are K ≥ L instruments, Conditions 1-4 hold

for all comparisons (zm, z−m) and (z′m, z−m) in Z for all m = 1, 2, ...,K, and Condition 5 holds

for zk with k ≤ L, the following weighted average component treatment effect is identified:

λrkj =
L∑

`=1

θk`λ`j ,

with θk` ≥ 0 for all `.

Proof. Let Condition 5 hold for instrument k that satisfies k ≤ L, with P`(zk, z−k) ≥ P`(z
′
k, z−k)

and zk > z′k for all `. If the model in (10) describes the DGP, then it follows that γk > 0 and

γk` > 0 for all `, such that θk` ≥ 0 for all `. It also follows that the just-identified treatment

effect estimands across all instruments for outcome j are given by πj = θλj . The normalization

given in (14) is equivalent to defining πj = θrλrj = θθ−1L θLλj , where θL contains the first L rows

of θ. λrj = θLλj implies that λrkj =
∑L

`=1 θk`λ`j for k ≤ L, which implies that the normalized

component treatment effect defined in terms of instrument k, λrkj , is identified.

The proof above requires that the number of unobserved treatment components be known

to the researcher and be fewer than the number of instruments. It also requires homogeneous

treatment effects for unobserved treatments’ effects. These are sufficient conditions for the

result, and perhaps could be weakened. Loosely speaking, if just-identified IV estimands for

all instruments and all outcomes can be perfectly explained by constant weights on a lower-

dimensional number of treatment effects, the result above will hold. I leave consideration of

possible weaker conditions under which the same or similar result holds for large numbers of

unobserved treatments and/or heterogeneous effects of the unobserved component treatments

to future work.

3.2 Estimation

This section describes estimation of the model. Substituting the factor structure on treatment

effects using πkj = θrk`λ
r
`j in model (11), expanding the model to contain equations for all
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outcomes, and rewriting it in matrix notation gives

Y1 = Xβ1 + Zγθrλr1 + ε1

Y2 = Xβ2 + Zγθrλr2 + ε2

...

YJ = XβJ + ZγθrλrJ + εJ

D = Xγx + Zγ + u.

(17)

It is straightforward to estimate the above system via GMM with moments given by

E[Z∗(Y1 −Xβ1 − Zγθrλr1)] = 0

E[Z∗(Y2 −Xβ2 − Zγθrλr2)] = 0

...

E[Z∗(YJ −XβJ − ZγθrλrJ)] = 0

E[Z∗(D −Xγx − Zγ)] = 0,

(18)

where Z∗ = [Z,X]′.

It is helpful to consider two extreme cases to develop intuition for the estimator. When

L = 1, the constraint in (15) implies that θ is a K × 1 vector of ones, such that the structural

second stage in (12) is equivalent to the second stage in (11) under the single treatment effect

constraint πkj = πj , where πj = λj is the scalar IV-GMM estimand. When L = K, the

constraint in (15) implies that θ is a K × K identity matrix, such that the structural second

stage in (12) is identical to the second stage in (11) with λj = πj = [π1j , π2j , ..., πKj ]
′. The

factor-augmented treatment effects model thus nests IV-GMM and just-identified IV as special

cases. For L < K, the model allows many instruments to identify a lower-dimensional number

of effects for each outcome, with the goal of achieving efficiency gains similar to those that

may be achieved by 2SLS or IV-GMM without requiring every instrument to satisfy uniform

treatment responses.

3.3 Testing the Number of Component Treatments

The previous section describes estimation of the FATE model for L unobserved component

treatments, where L is known. This section describes a statistical test for the null hypothesis
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that the model is correctly specified, which means instruments satisfy independence, exclusion,

and uniform treatment responses, with each of L unobserved treatments having homogeneous

effects. If this test is rejected and the researcher is sure that the other conditions are satisfied, it

is possible that the instruments work through more than L unobserved component treatments

to drive outcomes.

If the above assumptions are satisfied and as N → ∞, the moment conditions in (18) will

hold exactly. In small samples, these moment conditions might not exactly hold, but we can

test the hypothesis that they hold in the population by replacing them with within-sample

estimates:

N∑
i=1

Z∗i (Yi1 −Xiβ̂1 − Ziγ̂θ̂
rλ̂r1) = 0

N∑
i=1

Z∗i (Yi2 −Xiβ̂2 − Ziγ̂θ̂
rλ̂r2) = 0

...

N∑
i=1

Z∗i (YiJ −Xiβ̂J − Ziγ̂θ̂
rλ̂rJ) = 0

N∑
i=1

Z∗i (Di −Xiγ̂x + Ziγ̂) = 0,

(19)

The implied test is the Hansen (1982) J-test, which tests the null that the sample estimates

of system (18) are satisfied with estimated values. When the assumed value L is L = 1, this

is similar to the J-test of overidentifying restrictions for IV-GMM. When L = K, the test is

trivially satisfied because the model is estimated to set the sample moments to zero. When L is

between 1 and K, a large J-statistic indicates that an identification assumption is likely to be

violated, which includes the possibility that the true number of unobserved treatments is larger

than the assumed value of L.

4 Data

I estimate returns to college with the factor-augmented treatment effects model described above

using data from the National Longitudinal Survey of Youth 1979 (NLSY79). The NLSY79 fol-

lows a group of 12,686 individuals who were between the ages of 14 and 22 in 1979. Respondents

were surveyed annually for the first 15 years and biennially afterwards. Survey responses include
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information on years of education, earnings, geography of residence, and a wealth of auxiliary

information. In addition to meeting the requirements of my model of containing multiple in-

struments and outcomes, this dataset is attractive because it has been used extensively in the

literature on returns to education, which helps to emphasize my methodological contributions

by holding fixed some other potential explanations for similarities and differences in results. In

particular, I use the same sample of white males that was used by Carneiro, Heckman, and

Vytlacil (2011), matched with longitudinal wage data constructed according to the procedure

described in Ashworth, Hotz, Maurel, and Ransom (2021).

The composite treatment of interest is college attendance as of age 25. Estimating my model

requires multiple outcomes and instruments, as shown in expression (16). The longitudinal

nature of the NLSY allows me to set j = t for t = 26, . . . , 50 and rely on wage outcomes over

the lifecycle to identify the model.9

I use several instruments that are established in the literature on returns to education.

They are average wages in the county of residence at age 17, an indicator for the presence of

a college in county of residence at age 14, and average tuition of public colleges in the county

of residence at age 17.10 That each of these variables contributes to the college attendance

decision is intuitive as well as testable. I discuss the validity of each instrument separately in

terms of independence, exclusion, and uniform treatment responses.

Local wages have been used as explanatory variables for educational decisions by Cameron

and Heckman (1998), Cameron and Heckman (2001), Cameron and Taber (2004), and Carneiro,

Heckman, and Vytlacil (2011). Following Carneiro, Heckman, and Vytlacil (2011), I use the

average values of this variable at age 17 at the county level as an instrument for college atten-

dance. Because local labor market conditions may contribute to outcomes through channels

other than education, I control for permanent wages in the county of residence at age 17, per-

manent unemployment in the state of residence at age 17, wages in the county of residence

in 1991, and unemployment in the state of residence in 1991 (to control for persistent early

life-cycle labor market shocks). It follows that I am effectively using temporal deviations from

permanent local wages at age 17 as an instrument. The primary channel through which I expect

this instrument to affect college attendance is by making the outside option of directly entering

9Researchers considering using this method in other applications should rarely be deterred by a lack of out-
comes. Even if economically meaningful outcomes are sparse in a given dataset, it is possible to estimate the
model using outcomes that lack obvious economic significance but nonetheless contribute to identification.

10The unemployment rate in the state of residence at age 17 is another commonly used instrument. I have
opted to exclude it because it is extremely weak compared to the other instruments.
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the workforce more attractive, without altering individuals’ preferences over types of college,

suggesting that it is particularly likely to satisfy uniform treatment responses (and uniform

unordered monotonicity). It is also possible that this instrument affects college decisions by

relaxing credit constraints, allowing individuals who would not have attended college to do so,

and allowing individuals who would have attended college to attend more expensive colleges,

though this explanation is at odds with the empirical finding of a negative first stage coefficient

for this instrument.

The presence of a college in the county of residence at age 14 has been used as an instrument

for education by Card (1993); Kane and Rouse (1995); Kling (2001); Currie and Moretti (2003);

Cameron and Taber (2004); Carneiro, Heckman, and Vytlacil (2011), and Mogstad, Torgovitsky,

and Walters (2021). I expect the presence of colleges in the county of residence to primarily

influence education by encouraging students to attend a nearby college through a cost reduction

(both pecuniary and psychic) mechanism. If this sort of cost reduction is more important for

students inclined toward particular types of college education, such as majors (Altonji, Blom,

and Meghir, 2012) or quality (Black and Smith, 2006), then this IV will identify the effects

of such types of education, and may violate uniform treatment responses if individuals prefer

nearby colleges of an otherwise non-preferred types to distant colleges of more-preferred types.

For instance, if college returns are only a function of quality and some individuals induced into

college by this instrument have a preference ordering of nearby high-quality college � nearby

low-quality college � distant high-quality college, we might expect this instrument to partially

represent the difference between returns to low-quality college and high-quality college (driven

by such individuals whose nearby college is low-quality). Independence and exclusion for this

instrument are threatened by correlation between college presence and students’ ability, as noted

by Carneiro and Heckman (2002) and Cameron and Taber (2004). To address this, I control

for a measure of ability (the Armed Forces Qualification Test, AFQT), following Carneiro,

Heckman, and Vytlacil (2011).

Local tuition costs have been used as an instrument for education by Kane and Rouse (1995),

Cameron and Heckman (1998), Cameron and Heckman (2001), and Carneiro, Heckman, and

Vytlacil (2011). This is similar to local labor market conditions in that it may be correlated

with unobserved ability, such as if expensive colleges produce different externalities for the local

community than cheap colleges. I control for mother’s years of education, permanent local labor

market conditions, and AFQT to address this concern. I view this instrument as a pecuniary
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cost-shifter, which produces particular concerns regarding uniform treatment responses. Cost-

shifter instruments produce income effects, which I expect to induce exposed individuals to

obtain leisure, potentially by putting less effort into their studies. If low-effort college has lower

returns than high-effort college and this instrument shifts sufficiently many individuals from

high-effort college to low-effort college, it will place negative weights on high-return college

effects, yielding a downward-biased estimate. For this reason, I choose this instrument to not

identify an unobserved treatment variety, explicitly allowing it to contribute to estimation while

taking on negative weights.

I use several variables as controls, which is common in the literature. They are number

of siblings, permanent local unemployment in the state of residence at age 17 (average from

years 1979-2000), permanent local log wages in the state of residence at age 17 (average from

years 1979-2000), a binary indicator for urban residence at age 14, average wages in the county

of residence in 1991, average unemployment in the county of residence in 1991, year of birth

indicators, mother’s years of education, and the Armed Forces Qualifying Test score. Statistics

on the variables I use are shown in Table 1.

Table 1: Summary Statistics

Mean Standard deviation
(1) (2)

Mean log wages, ages 26-30 2.084 0.463
Mean log wages, ages 31-35 2.172 0.533
Mean log wages, ages 36-40 2.201 0.575
Mean log wages, ages 41-45 2.198 0.593
Mean log wages, ages 46-50 2.156 0.618
Attended college 0.495 0.500
Number of siblings 2.927 1.909
Permanent local unemployment at age 17 6.251 0.986
Permanent local log wages at age 17 10.283 0.188
Urban residence at age 14 0.744 0.436
Local unemployment rate in 1991 6.810 1.267
Local log wages in 1991 10.293 0.165
Year of birth 1959.759 2.340
Mother’s years of schooling 12.102 2.335
Corrected AFQT score 0.449 0.952
Local log wages at age 17 10.276 0.164
Nearby four-year college at age 14 0.525 0.500
Local tuition at age 17 21.568 7.981

Sample size 1747

Notes: Means and standard deviations for white males in the National Longitudinal Survey of Youth 1979 sample.
AFQT corrected for years of schooling at the timing of test-taking. Permanent log wages and unemployment are
calculated as average values from 1973 to 2000 for the county of residence at age 17.
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5 Results

I begin by showing IV treatment effects estimated via GMM for just-identified IV excluding each

instrument individually and including the others as controls, as well as IV-GMM excluding all

IVs from outcome equations estimation. These results are in Table 2, and are shown graphically

in Figure 2. I divide all coefficients by four to express returns in annual terms. This table

reports F-statistics for each model’s first stage, as well as p-values for the Hansen (1982) J test

of overidentifying restrictions for the model excluding all IVs from outcome equations.

The first stage F-stats for local wages, nearby college, and local tuition when used alone are

18.7, 5.5, and 2.5, respectively, with the F-stat for all of them is 11.1. Two of these fall below

the commonly-invoked heuristic threshold of 10, while also falling short of the corresponding

statistics calculated in a similar exercise by Mogstad, Torgovitsky, and Walters (2021), likely

due to correlation between IVs and my inclusion of a third that they do not use (local tuition).

The particularly weak instruments, nearby college and local tuition, have intuitive (positive

and negative, respectively) signs on college attendance. Angrist and Kolesár (2021) show that

sign-screening reduces bias from weak IVs, so I assume that the instruments are immune to

weak IV problems.11

The local earnings instrument consistently estimates relatively high returns to college, which

grow larger later in the lifecycle. I argued above that this instrument is particularly likely to

satisfy uniform unordered monotonicity, suggesting that these estimates likely place positive

weight on returns to different types of college for different types of students. It follows that

college may be a better investment than is sometimes suggested in the literature, with many

estimates suggesting returns in the proximity of 10% (Card, 2001). It is possible that other

instruments are valid as well and this instrument places particularly high weight on high-return

versions of college. This could occur if particularly money-motivated individuals, who are

inclined toward high-paying versions of college, are particularly sensitive to local variation in

earnings when they make their education decisions. In either case, the returns implied by this

instrument suggest that extremely high return versions of college exist for some individuals,

which could suggest scope for substantial social gains by finding ways to induce more individuals

to attend such versions of college.

11Because I would have used IVs common to the literature (and this dataset) regardless of their first stages,
it is inaccurate to say that I sign-screened these. It is likely, however, that prior researchers sign-screened these
IVs when introducing them, so the sign-screening argument holds.
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The nearby college and local tuition instruments both run some risk of inducing students to

shift out of high-effort college and toward low-effort college, as they both can be seen as cost-

shifters which likely have income effects. It follows that the estimates for these instruments

should be lower than true returns if low-effort college has lower returns than high-effort college,

which is consistent with these point estimates being consistently lower throughout the lifecycle

than those identified using the local earnings IV. That said, the standard errors on estimates

from both of these IVs are quite large, which makes it difficult to draw sharp conclusions.

Excluding all IVs from outcome equations, as in model (4), yields substantial efficiency gains

as evidenced by the substantially smaller standard errors. However, it is possible that these

estimates inherit some of the bias from net uniform unordered monotonicity violations of the

nearby college and local tuition instruments. Noteably, the point estimates are almost always

smaller when using all IVs to estimate treatment effects relative to only using the local earnings

IV, which is consistent with the possibility of these estimates shifting some individuals out of

high-return college and into low-return college.

Figure 2: IV-GMM Estimates of Lifecycle Wage Returns to College

Notes: This graph depicts IV-GMM point estimates of the effects of college attendance on lifecycle log wages for
each excluded instrument listed, as well as the case where all instruments are excluded. See Table 2 for point
estimates and standard errors.

I also estimate the factor-augmented treatment effects model in (17) with results shown

in Table 3, defining the first unobserved treatment in terms of the local earnings IV. From

28



Table 2: IV-GMM Estimates of Lifecycle Returns to College, by IV

2nd Stage Excluding:
Local earnings Nearby college Local tuition All

(1) (2) (3) (4)

Log wage, age 26 0.116 (0.086) -0.050 (0.145) 0.227 (0.226) 0.087 (0.052)
Log wage, age 27 0.138 (0.074) 0.104 (0.142) -0.013 (0.194) 0.113 (0.053)
Log wage, age 28 0.235 (0.087) 0.056 (0.131) -0.130 (0.216) 0.139 (0.054)
Log wage, age 29 0.213 (0.083) 0.136 (0.139) -0.099 (0.199) 0.141 (0.055)
Log wage, age 30 0.125 (0.092) 0.161 (0.136) 0.147 (0.210) 0.167 (0.056)
Log wage, age 31 0.142 (0.091) 0.128 (0.133) -0.015 (0.200) 0.143 (0.054)
Log wage, age 32 0.238 (0.082) 0.127 (0.134) -0.080 (0.211) 0.162 (0.054)
Log wage, age 33 0.283 (0.094) 0.110 (0.142) 0.038 (0.200) 0.203 (0.060)
Log wage, age 34 0.293 (0.102) -0.025 (0.144) -0.067 (0.212) 0.179 (0.066)
Log wage, age 35 0.217 (0.118) -0.063 (0.151) -0.007 (0.203) 0.143 (0.069)
Log wage, age 36 0.332 (0.109) 0.083 (0.141) -0.009 (0.199) 0.211 (0.065)
Log wage, age 37 0.251 (0.099) 0.032 (0.139) 0.106 (0.190) 0.190 (0.062)
Log wage, age 38 0.255 (0.099) -0.041 (0.152) 0.068 (0.188) 0.179 (0.064)
Log wage, age 39 0.253 (0.091) -0.029 (0.149) -0.031 (0.203) 0.152 (0.060)
Log wage, age 40 0.274 (0.094) -0.025 (0.148) 0.016 (0.188) 0.166 (0.060)
Log wage, age 41 0.259 (0.095) 0.027 (0.149) -0.219 (0.272) 0.145 (0.059)
Log wage, age 42 0.226 (0.093) 0.063 (0.151) -0.222 (0.259) 0.140 (0.060)
Log wage, age 43 0.195 (0.087) 0.100 (0.151) -0.295 (0.299) 0.111 (0.059)
Log wage, age 44 0.256 (0.089) 0.098 (0.145) -0.359 (0.334) 0.131 (0.058)
Log wage, age 45 0.255 (0.089) 0.037 (0.147) -0.339 (0.332) 0.121 (0.057)
Log wage, age 46 0.274 (0.106) -0.002 (0.148) -0.307 (0.319) 0.128 (0.059)
Log wage, age 47 0.236 (0.102) -0.084 (0.158) -0.233 (0.282) 0.098 (0.059)
Log wage, age 48 0.238 (0.108) -0.075 (0.157) -0.214 (0.269) 0.107 (0.060)
Log wage, age 49 0.242 (0.094) -0.104 (0.167) -0.301 (0.331) 0.115 (0.064)
Log wage, age 50 0.297 (0.108) -0.076 (0.168) -0.409 (0.383) 0.140 (0.069)

First Stage F-stat 18.709 5.220 2.472 11.126
Over-id p-value 0.339
Sample size 1747 1747 1747 1747

Notes: Two-step IV generalized method of moments estimates of the effects of college attendance on log wages
for white men in the NLSY79 over the lifecycle. Age-specific estimates for models 1-3 obtained excluding a
single instrument and including all others as controls along with the other control variables listed in Table 1.
Model 4 excludes all instruments from outcome equations. College returns are annualized by dividing the college
attendance coefficient by four. Robust standard errors in parentheses.
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Table 3: GMM Estimates of FATE Model of Lifecycle Returns to College

Local earnings component Nearby college component
(1) (2)

Component effects (λr)
Log wage, age 26 0.076 (0.074) 0.089 (0.055)
Log wage, age 27 0.143 (0.073) 0.105 (0.058)
Log wage, age 28 0.234 (0.085) 0.136 (0.076)
Log wage, age 29 0.214 (0.082) 0.137 (0.068)
Log wage, age 30 0.130 (0.086) 0.134 (0.059)
Log wage, age 31 0.136 (0.085) 0.099 (0.060)
Log wage, age 32 0.227 (0.078) 0.150 (0.067)
Log wage, age 33 0.259 (0.088) 0.197 (0.070)
Log wage, age 34 0.278 (0.096) 0.179 (0.079)
Log wage, age 35 0.173 (0.097) 0.121 (0.079)
Log wage, age 36 0.301 (0.097) 0.209 (0.080)
Log wage, age 37 0.227 (0.089) 0.178 (0.069)
Log wage, age 38 0.234 (0.091) 0.171 (0.073)
Log wage, age 39 0.231 (0.085) 0.137 (0.077)
Log wage, age 40 0.244 (0.087) 0.162 (0.074)
Log wage, age 41 0.244 (0.088) 0.122 (0.082)
Log wage, age 42 0.221 (0.086) 0.114 (0.078)
Log wage, age 43 0.199 (0.082) 0.081 (0.081)
Log wage, age 44 0.245 (0.085) 0.097 (0.092)
Log wage, age 45 0.238 (0.083) 0.091 (0.091)
Log wage, age 46 0.261 (0.100) 0.111 (0.095)
Log wage, age 47 0.218 (0.096) 0.085 (0.090)
Log wage, age 48 0.210 (0.102) 0.083 (0.089)
Log wage, age 49 0.204 (0.085) 0.055 (0.100)
Log wage, age 50 0.259 (0.097) 0.075 (0.114)

Component weights (θr)
Local earnings 1 (.) 0 (.)
Nearby college 0 (.) 1 (.)
Local tuition -2.498 (2.333) 3.498 (2.333)

Value of criterion function (Q) 0.009
Over-id p-value 0.904
Sample size 1747

Notes: Two-step generalized method of moments estimates of the factor-augmented treatment effect model
of effects of college attendance on log wages for white men in the NLSY79. Component-defining instruments
have weights normalized to 1 on respective components. College returns are annualized by dividing the college
component effects by four. Robust standard errors in parentheses.
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Figure 3: GMM Estimates of Lifecycle Wage Returns to Unobserved College Components

Notes: This graph depicts GMM point estimates of treatment effects from the factor-augmented treatment
effects model on lifecycle log wages with components defined in terms of listed instruments. See Table 3 for point
estimates and standard errors.

theorem 1, this will provide consistent estimates of a positively-weighted average of unobserved

treatments’ effects if the local earnings IV satisfies independence, exclusion, relevance, uniform

treatment responses, and I properly specify the number of unobserved treatment varieties. I

define the second component in terms of the nearby college instrument. If nearby college

satisfies the required conditions, these estimates are consistent for a weighted average of effects of

unobserved component treatments, whereas the estimates in column (2) are nuisance parameters

if local earnings is a valid IV and nearby college is not. Because of the concerns with nearby

college listed above, I opt to view the associated estimates as nuisance parameters, but the

reader is free to make their own decision.

The F-stat of 18.7 in Table 2 suggests relevance is satisfied for local earnings, while the

p-value on the test of overidentifying restrictions of 0.339 in Table 3 means that we fail to reject

the null that L = 2 component treatments are sufficient to explain the data. The FATE model

allows extra instruments to contribute to estimation with negative weights, which we see in the

case of local tuition placing weights of -2.5 and 3.5 on the local earnings and nearby college

treatment components, respectively. As in the IV-GMM results, the local earnings component

treatment has substantially higher point estimates through the lifecycle than the nearby college
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component. Interestingly, the local earnings component point estimates visually look (both in

the table and in Figure 3) like those of just-identified IV using the local earnings instrument,

while the nearby college component effects look like those of IV-GMM using all instruments for

estimation of treatment effects.

Perhaps for similar reasons, the standard errors for the (potentially uninterpretable) nearby

college component treatment effect estimates are dramatically smaller than those for the nearby

college instrument in the standard IV-GMM results in Table 2, while the standard errors for the

local earnings component are essentially unchanged (with trivial reductions). Possible intuition

for this is that the FATE model was able to rationalize the just-identified IV estimates of the

local tuition instrument by altering the nearby college component treatment effects, without

needing to alter the local earnings component treatment effects very much relative to the just-

identified IV estimates. It follows that the local tuition IV helps to estimate the nearby college

component treatment effect parameters without lending much to the local earnings component

effect parameter estimation. This is economically reasonable insofar as both nearby college and

local tuition may work through a cost-shifter channel, inducing similar types of individuals into

similar types of college (with local tuition perhaps doing so more extremely, as evidenced by it

placing a weight of 3.5 on the nearby college treatment component).

6 Conclusion

A large literature describes implications of unmodeled treatment effect heterogeneity for esti-

mation of treatment effects. This paper addresses the related problem of unmodeled treatment

heterogeneity for treatment effect estimation. It shows the validity of standard methods when

instruments shift types of individuals into (and not between) diverse varieties of treatment on

net, as well as providing an alternative factor-augmented treatment effects model that allows

instruments that shift individuals between types of treatment to contribute to treatment effect

estimation. I estimate the FATE model in the context of returns to college using the NLSY79,

finding particularly high returns to college that range between 7.6% and 30.1% over the lifecy-

cle for the component treatment associated with the instrumental variable least-likely to shift

individuals between treatments (local earnings at age 17).

For empirical applications of instrumental variables methods that make use of single instru-

ments, the most relevant contribution of this paper is the assumption of net uniform unordered
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monotonicity, which allows for unmodeled versions of treatment that affect outcomes differently

to reside in the residuals of outcome equations (formally violating the exclusion restriction for

modeled composite treatments). As in the case of discussions of the monotonicity condition of

Imbens and Angrist (1994), I recommend that empirical researchers justify the net uniform un-

ordered monotonicity assumption when possible, or discuss its implications for their estimates

when it may not be valid. For instance, an instrument that violates net uniform monotonicity

will be only minimally biased if there is minimal heterogeneity in effects between different ver-

sions of treatment. Furthermore, treatment effects estimated using a policy-relevant instrument

may be informative for changes in that particular policy even if it violates net uniform unordered

monotonicity. For instance, the returns to college estimated using local tuition variation may

be relevant for describing the likely effects on earnings of increases in subsidization of college,

if such counterfactual subsidies move individuals between versions of treatments the same way

the instrument does.

For empirical applications involving multiple instruments, the factor-augmented treatment

effects model developed here provides an alternative to 2SLS or other standard methods for

pooling variation from multiple instruments into a single treatment effect estimate. The FATE

method is likely to be particularly useful when a particularly credible instrument, such as

randomized assignment to treatment, is relatively weak, while some less credible instruments

that may violate net uniform unordered monotonicity are relatively strong.

An attractive option for this is to construct a binary indicator set to one if an instrument

takes the value with the lowest propensity of treatment, and use this constructed instrument

to define a component treatment in the FATE model while allowing the continuous (or other

functional form) versions of the instrument to place negative weights on unobserved versions

of treatment. In the extreme case where the treatment propensity is zero at a particular value

of the instrument, it is impossible for there to be any violations of net uniform unordered

monotonicity, and such violations are likely to still be rare when the treatment propensity

is close to zero. Such an exercise can be implemented in applications with a single strong

instrument that might not satisfy net uniform unordered monotonicity when used as a single

continuous variable, but which retains sufficient strength for treatment effect estimation when

split into multiple instruments.

The sufficient conditions given above for the factor-augmented treatment effects model to

identify convex averages of unobserved treatments’ effects do not allow for individual-level treat-
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ment effect heterogeneity. Some heterogeneity in treatment effects between individuals can be

attributed to heterogeneity in chosen treatments, but it is plausible that a small number of

unobserved treatments (two in the application) is insufficient to fully characterize the relevant

heterogeneity. Future theoretical work on the factor-augmented treatment effects estimator

to determine its validity in the presence of treatment effect heterogeneity and/or more unob-

served component treatments than instruments may be helpful in increasing its usefulness for

applications.

In terms of the application to returns to college, I find evidence that effects of college on wages

are potentially higher than are commonly found in the literature. Estimating returns as driven

by local wages at age 17, which is unlikely to alter students’ preferences over different types

of college, gives treatment effects from 12.5% to 33.2% (IV-GMM) or 7.6% to 30.1% (FATE),

which are generally much higher than the returns around 10% that are commonly found in the

literature. Insofar as variation in returns between instruments is due to instruments inducing

individuals into different types of treatments, these results suggest substantial potential for

gains (in terms of wage increases) from policies that move students into higher-return types of

college. Insofar as students’ current choices are driven in part by information frictions regarding

pecuniary returns to college or students internalize nonpecuniary benefits from types of college

more than pecuniary benefits (for instance due to taxes), aggregate welfare gains are likely as

well.

The distinction between heterogeneous treatment effects and heterogeneous treatments is

central to these policy implications. If some students have high returns and others have low

returns, income-maximizing (or similar) policies are those that induce students to attend college

if and only if they have positive returns. If, however, different versions of college have different

effects (in line with a very large literature on college majors and quality), then optimal policy

will induce particular students into well-matched versions of college. The finding, such as in

Cunha, Heckman, and Navarro (2005) or Carneiro, Heckman, and Vytlacil (2011), that a large

minority of individuals have negative returns to college is potentially due to students failing to

choose versions of college that best-improve their human capital. Further work to distinguish

between heterogeneous effects of treatments and effects of heterogeneous treatments is essential

to inform policies that seek to improve educational allocations.
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Appendix A: Factor Augmented Treatment Effects Example

In this section, I walk through an intuitive three-step estimation procedure for an extreme case

of the model where there are three instruments (K = 3), two unobserved treatment varieties

(L = 2), and J outcomes, where J ≥ 2. The first step is to estimate just-identified IV treatment

effects for each instrument for all outcomes using standard methods, yielding π̂. The second

step infers (λ̂j , θ̂) from π̂j for a single outcome. The third step takes (θ̂) as given (similarly

to 2SLS implicitly imposing ex ante that all instruments weight a single common version of

treatment), yielding λ̂−j for all outcomes other than j.

Considering only outcome j, the restrictions in (13), (14), and (15) set

π̂1,j = λ̂1,j

π̂2,j = λ̂2,j

π̂3,j = θ̂3,1λ̂1,j + (1− θ̂3,1)λ̂2,j ,

which is a system of three equations with three unknowns. It follows that the unobserved

treatments’ effects and their outcome-invariant weights are exactly identified.

The weight parameters in θ̂ estiamted using outcome j can be taken as given for all other

outcomes. It follows that estimates of (λ1,j′ , λ2,j′) can then be obtained as the two parameters

that best fit the system of three equations,

π̂1,j′ = λ̂1,j′

π̂2,j′ = λ̂2,j′

π̂3,j′ = θ̂3,1λ̂1,j′ + (1− θ̂3,1)λ̂2,j′ ,

for any outcome j′ 6= j. When N → ∞ and there is no model misspecification, this seemingly

overidentified system of equations will hold exactly.

In the example given, only a single outcome is used to estimate weights, and they are taken

as given for all other outcomes. In the GMM estimator described in Section 3, all outcomes

contribute to estimation of weights. Intuitively, in the case where J → ∞, each outcome’s

contribution to the estimation of weights goes to zero, and the simultaneously-estimated model

takes on more of the intuition described in the final step here. Similarly, if a researcher has access

to auxiliary outcomes that are not of substantive interest to the research question, it is possible
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to construct an estimator that estimates instrument weights on unobserved treatments using

the auxiliary treatments only, while taking the weights as given for the outcomes of interest.12

Such an estimator could be implemented in steps as described here, or could be implemented

via imposing a GMM weighting matrix with arbitrarily high weights on auxiliary outcomes,

forcing the estimator to choose θ that prioritizes the fit for those particular moments, leaving

other moments to take the implied θ̂ as given.

12The use of auxiliary outcomes is similar to the use of test equations by Cunha, Heckman, and Navarro (2005)
and Sarzosa and Urzúa (2015), among others, when estimating models that control for unobserved heterogeneity
in ability.
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