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1 Introduction

A large number of young people attend universities, many of whom live in university housing.
Their assignments to dorms and peers are of policy interest because complementarities between
individuals and their dorms or peers allows for the possibility of alternative living arrangements
that may improve outcomes on average, or even for all groups. Because many aspects of these
living arrangements are determined by university administrators according to partially random
procedures, a large literature has developed to consider which types of peers positively affect other
peers, with a particular focus on nonlinear effects which enable aggregate gains from counterfactual
peer assignments. In this paper, we estimate effects of roommate, neighbor, and dorm characteris-
tics on a range of academic outcomes in the setting of a public four-year university by leveraging
intent-to-treat simulated peer assignments generated by a data-driven room assignment mechanism.

A large literature investigates effects of peers in university housing on academic and vocational
outcomes. However, this literature overwhelmingly leverages data from private universities (Sacer-
dote, 2001; Stinebrickner and Stinebrickner, 2006; Marmaros and Sacerdote, 2006; Sacerdote, 2011)
and military academies (Carrell et al., 2013, 2019; Jones and Kofoed, 2020) where the randomiza-
tion of room assignments is well-understood, but which might not be representative of peer effects
in more common settings. We provide evidence on effects of roommates, neighbors, and dorms in
student housing at a large public four year institution in the United States, merging administrative
data on pre-existing student characteristics, room assignments, and outcomes with internal-use
data from University Housing on dorm and roommates preferences. Specifically, we follow 24,265
incoming freshmen at the University of Wisconsin-Madison from 2016-2019 who submit housing
preferences the summer before their first year on campus.

It is possible that the limited attention to large public universities in the literature is due to
room assignment complexities that invalidate commonly-applied empirical strategies that condition
on observed room assignment strata indicators as in the research described above. For instance,
Foster (2006) discusses significant complications regarding nonrandom roommate assignments at
the University of Maryland, and focuses her intention instead on estimating effects of peers who
inhabit the same wings of dorms, rather than rooms. We find that room assignment procedures
in our public four year institutional setting are substantially more complex and less consistently
documented than those described in the literature.1 We overcome this challenge by applying
and extending recent methodological innovations by Abdulkadiroğlu et al. (2017), Borusyak and
Hull (2020), and others that instrument for treatment assignments with treatment offers, while
controlling for expected values of offers. Similar methods have been used to estimate effects, for
instance, of school value added (Angrist et al., 2017), charter schools (Abdulkadiroğlu et al., 2017),
and travel distance to school (Angrist et al., 2022). We are the first (to our knowledge) to apply
these methods to estimation of peer effects in a university setting.

Unlike recent applications in the school choice literature of these methods, we are not able to
replicate the observed room assignments with a parsimonious room assignment mechanism, elim-
inating our ability to control for expected values of treatment offers. Our key methodological
insight is that the results of Abdulkadiroğlu et al. (2017) and Borusyak and Hull (2020) permit
treatment effect estimation of simulated treatments when controlling for expected simulated treat-
ments regardless of whether simulated treatment offers correspond to realized treatment offers. It

1For instance, in interviews with housing staff, we were informed that university housing staff exercises judgment
while doing room assignments, intentionally attempting to improve roommate match quality according to unspecified
rules. One example given was that they avoid assigning students from the same high school as roommates if the high
school is small. There is neither a requirement that staff always perform this correction nor a standard metric for
determining whether a high school is small.
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follows that the dorm or peer assignments implied by any arbitrary room assignment mechanism
are valid (but perhaps irrelevant) instruments for realized treatment assignments when controlling
for students’ expected dorm or peer assignments implied by the same mechanism. In other words,
we construct “intended intention-to-treat instruments”, where we as researchers intend for our as-
signment mechanism to produce treatment assignments that match those intended by the central
assigner. Realized assignments may differ from our simulated assignments either because of lack of
take-up from the central planner when they make assignment offers that conflict with those that
we simulate, or because of lack of take-up from students when they refuse assignment offers made
by the central planner.

While any room assignment mechanism is likely to produce conditionally independent instru-
ments, there is no requirement that it will produce relevant instruments that reliably predict realized
dorm or peer assignments. Formally, this constitutes a setting with infinitely many potential in-
struments and a finite number of observations. To construct relevant instruments, we simulate
room assignments according to a small number of candidate mechanisms that satisfy parsimony
constraints, and we test the accuracy of each mechanism against the assignment offers (not real-
ized assignments). To avoid complicating inference for treatment effects via pretesting, we select
the room assignment mechanism that best rationalizes the randomly-generated (and therefore in-
dependent of relevant peer traits) lottery room assignment lottery tiebreakers of students’ peers
implied by assignment offers, rather than attempting to match dorm or peer characteristic variables
of realized peers directly. Model selection methods such as those we use are potentially useful to
school (etc.) choice applications with researcher ignorance regarding true assignment mechanisms
as well as in the more general framework of Borusyak and Hull (2020) where there is uncertainty
regarding the economic model generating the data.

We estimate effects of roommate ACT scores, roommate STEM status, neighbor gender, and
dorm-level gender integration. Our results on dorms are particularly well-powered, and are made
possible by our school-choice style identification style that explicitly leverages a substantial amount
of between-dorm identifying variation. We find that assignment to coeducational dorms (those with
no partitions between genders) increases four-year graduation rates by over 10 percentage points for
men (90% CI) while having no significant effect on women. Given that just under 70% of students in
our sample live in coed dorms, linear extrapolationn suggests that our university could potentially
increase four-year graduation for male students by 3 percentage points, with no negative offsets to
women, by converting all dorms to be fully coeducational. This is consistent with previous findings
that women and girls in educational settings positively effect college graduation rates (Hill, 2017),
high school graduation rates and test scores (Lavy and Schlosser, 2011), and primary school reading
and math scores (Gottfried and Harven, 2015).

In addition to effects at the dorm level, we estimate effects of neighbor gender by leveraging
more granular variation in exposure to opposite-gender peers made possible by the existence of
coeducational dorms. To do this, we manually geocode dormrooms in three dimensions using
university blueprints. This allows us to construct a matrix of (Manhattan) distances in inches
between each room and every other room on the same floor. We define neighbors for individuals
in each room as those individuals that inhabit the nearest three rooms, allowing us to investigate
effects of peers at a more granular level than past work, such as Foster (2006) who found null results
of nearby peers when considering coarser wing-level variation in peers. We that exposure to female
neighbors increases the probability of graduating with a STEM major by 19 percentage points, with
suggestive (but insignificant) evidence that this effect is larger for men. We also find statistically
insignificant evidence that exposure to female peers positively effects freshmen retention and four-
year graduation for men with no effects on women — which we view as complementary to our
similar estimates of effects of coeducational dorms.
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We also consider effects of roommates. We estimate effects of peer STEM interest (based on in-
tended majors), peer verbal ACT scores, peer math ACT scores, and distances between individuals
values of these traits and those of their roommates. We find that assignment to a STEM roommate
has a 7 percentage point more positive effect for STEM individuals relative to non-STEM individu-
als on four-year graduation rates, with opposite effects of similar magnitude on students graduating
with a STEM major. We also find that a standard deviation (8.8 point) increase in ACT verbal
score distance narrowly falls short (p-value 0.13) of statistical significance in negatively affecting
freshmen retention by 7 percentage points. These findings broadly suggest potential benefits of
clustering students together based on academic abilities and interests, rather than exposing them
to academically diverse peers.

The paper proceeds as follows: Section 2 provides background on student housing at the Univer-
sity of Wisconsin; Section 3 describes the empirical strategy; Section 4 describes the data; Section 5
presents the results; and Section 6 concludes.

2 Background

Most US universities maintain on-campus housing for undergraduate students. This typically takes
the form of several dorms (residence halls), each with dorm rooms spread over several floors. Dorms
may be gender-integrated (coed) or gender-segregated and vary in their amenities, such as location
and dining facilities. Dorm rooms are typically dual occupancy, but single triple- or even quad-
occupancy dorm rooms also exist. The allocation of students to dorm rooms is generally managed
by an office for student housing.

We study peer effects in university housing at the University of Wisconsin-Madison (henceforth
‘the University’), a large, four-year public research university with an undergraduate population
of 33,500 students in Fall 2021. We focus on undergraduate students who lived in the University’s
dorms between 2016 and 2019. During this time period, the University had 22 dorms for under-
graduate housing, of which zero were single-sex, four had single-sex floors, four had single-sex wings
or room clusters within floors, and fourteen had no partitions between rooms housing individuals
of different genders (with the potential for randomly assigned opposite gender neighbors). Seven
of the dorms that had mixed gender floors also had gender inclusive rooms, in which students of
any gender could live with a predetermined roommate of any gender (students are never randomly
assigned an opposite sex roommate). Thirteen of the dorms included wings or other groups of
rooms that are reserved for students admitted to Learning Communities (e.g., Women in Science
and Engineering, WISE). Nine dorms had single person rooms, twenty-two had two-person rooms,
twelve had three-person rooms, eleven had four-person rooms, and three had six-person rooms,
with the majority of students residing in two-person rooms. Between 2016 and 2019, over 90% of
first-year undergraduate students lived in dorms, along with many higher-year students.

Division of University Housing at UW-Madison (known as ‘Housing’) is responsible for allocating
incoming first-year and returning students to dorm rooms. Incoming students are advised to apply
for housing before a cutoff date in the summer before the start of the fall semester, while returning
students face an earlier cutoff date. The assignment mechanism is a proprietary procedure that
is not fully documented. Through extensive interviews with Housing staff, we learned that the
following procedure is used to allocate rooms to students who applied for housing before their
cutoff date.

1. The University’s athletics department assigns student-athletes to rooms.

2. The following groups of students choose their rooms in order: a) students admitted to Learn-
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ing Communities (restricted to rooms in their Learning Community); b) returning students;
c) incoming transfer students and first-year students above age twenty.

3. Housing assigns genders to remaining rooms to ensure that dorms have space proportional to
incoming student gender shares (thereafter, students are only assigned to rooms that match
their gender).

4. Housing uses a Random Serial Dictator (RSD) assignment rule to place unassigned students
into dorms while rooms within dorms are allocated at the discretion of Housing staff:

(a) Students complete a housing questionnaire that elicits their housing preferences. In par-
ticular, students are asked to list the University’s dorms in order of preference (students
may rank as many dorms as they wish). Students may also state their preferred room
occupancy (single, double, triple or quad) and may designate a preferred roommate with
whom they wish to share a room; if the preferred roommate submits the same housing
preferences, the students become ‘predetermined roommates.’

(b) Each student is given a randomly generated ‘tiebreaker number.’ The tiebreaker number
for students with predetermined roommates is replaced by the lowest tiebreaker number
of the students in the roommate group. Students are then sorted in ascending order of
the tiebreaker number.

(c) Housing staff proceed through the sorted list from top to bottom. Each student (and
any predetermined roommates) is assigned to their most preferred dorm among those
dorms with remaining space and then assigned to a room within the assigned dorm. If
all dorms on the student’s preference list are full, Housing staff use discretion to place
the student (and any predetermined roommates) in an alternative available dorm room.
Housing does not have official guidelines for its staff regarding room placements within
dorms but claims to respect room occupancy preferences where possible.2

5. Housing staff use their judgment to adjust dorm and room assignments made in Step 4 above,
e.g., they may make adjustments to avoid students with particular preferences being clustered
together.

Students who apply for housing after the cutoff date are placed into dorm rooms at the discretion
of the Housing staff. After students are notified of their initial housing assignments, they may
request revisions at any time.

Students assigned in Steps 1-3 of the housing allocation procedure will not be randomly assigned
to dorms, but they may have randomly assigned peers (roommates or dorm neighbors), as the peers
assigned to them may be assigned according to the RSD assignment rule describe in Step 4 above.
Similarly, students with predetermined roommates will not have randomly assigned roommates but
may still have randomly assigned neighbors and be randomly assigned to a dorm.

3 Empirical Strategy

For residential treatments indexed by k in k = 1, 2, ...,K and individuals indexed by i, we are
interested in the effect of a treatment Dik (e.g. a binary indicator for living in a highly gender

2Empirically, we find that students clustered together in the random tiebreaker order are also clustered geograph-
ically within dorms.
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integrated dorm) on an outcome Yi (e.g. graduating from college). We model this effect as the
coefficient βk in the equation

Yi = β0 + βkDik + εi, (1)

where β0 represents a constant and εi contains unobserved determinants of the outcome. This
model of the true effect of Dik on Yi can be estimated via (naive) OLS, which will produce an β̂Nk
that is consistent for βk if Dk is uncorrelated with ε. As discussed in Section 2, students in some
cases choose their roommates directly, and they generally have substantial influence over their dorm
assignments either via direct room selection (such as for students in Learning Communities) or via
their dorm preference list submitted to Housing. If individuals’ dorm or roommate preferences are
correlated with their academic abilities or preferences (which otherwise affect the outcome), the
OLS estimate β̂Nk will contain omitted variable bias and will not have a causal interpretation.

Commonly employed methods in the peer effects literature (such as Sacerdote (2001) and Carrell
et al. (2013)) use stratified randomization designs, which involve estimation of equations such
as (1) that are augmented with strata fixed effects that control for all nonrandom determinants
of dorm/room/peer assignments. These equations may contain a large number of fixed effects,
which can severely undermine efficient estimation of βk even when all nonrandom determinants of
assignments are known to the researcher. When the researcher knows the random determinants of
treatment assignments (such as a randomly-generated tiebreaker) and the true mechanism used to
assign treatments in addition to the aforementioned nonrandom determinants of assignments, it is
possible to replace the high-dimensional strata fixed effects mentioned above with a scalar treatment
propensity score calculated via simulation or via known analytic formulas as in Abdulkadiroğlu
et al. (2017). Controlling for expected treatments in this way is sufficient to absorb the dependence
between treatments and unobserved determinants of outcomes, allowing for a causal interpretation
of β̂k (Rosenbaum and Rubin (1983); Hirano and Imbens (2004)).

In our setting, we do not know the nonrandom determinants of assignments or the true mech-
anism used for treatment assignments because Housing exercises judgment in how they place stu-
dents into rooms, potentially making use of student characteristics that we are unaware of.3 We
do, however, observe the random determinants of assignments in the form of Housing’s randomly
generated tiebreaker number assigned to each student. In this section, we describe a method that
uses the random tiebreaker in conjuction with a researcher-specified assignment mechanism to re-
cover treatment effect estimates with causal interpretations, which nests the above full-information
approaches as special cases.

3.1 Room Choice

To facilitate the discussion of our method and related methods, we adapt notation from Abdulka-
diroğlu et al. (2017) (AANP) to describe room allocations. A room choice problem assigns indi-
viduals i = 1, 2, ..., N in set I to room-spots (beds) indexed by s, with s = 1, 2, . . . , S. There are
N total students and S total room spots, where a particular feature of our setting is that N = S
because the assignment of interest is a room-spot rather than a dorm.

A room assignment mechanism ϕ uses observed (to the researcher) nonrandom determinants of
assignments, Wi, unobserved (to the researcher) nonrandom determinants of assignments, ηi, and
randomly assigned tiebreaker, ri, to place students into room-spots. The preferences that students
have over dorms, as well as other traits relevant for room assignments (such as gender or athlete

3Less importantly, strata indicators for the determinants of assignments that we are aware of would involve fixed
effects for 22! dorm preference permutations interacted with gender indicators, effectively using up our entire sample
to estimate nuisance parameters.
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status) are contained either in Wi or ηi depending on whether the researcher observes them. Each
student has a type denoting nonrandom determinants of their room assignments used by mechanism
ϕ indicated by θϕi = (Wϕ

i , η
ϕ
i ), where Wϕ

i ⊆ Wi and ηϕi ⊆ ηi.
4 Finally, each student is randomly

assigned a tiebreaker number, ri in {1, 2, ..., N}, which denotes their position in the order, and
this tiebreaker is assumed to be observed by the researcher. A student’s room-spot assignment
as determined by mechanism ϕ is given by µϕi (θϕ, r) ∈ {1, 2, . . . , S}, with i’s realized assignment,
µi, coinciding with the assignment determined by the true (potentially unknown to the researcher)
allocation mechanism, denoted by ϕ = ∗, such that µi = µ∗i (θ

∗, r).
While we model assignments at the level of rooms, we estimate effects of lower-dimensional

treatments that are deterministic functions of room assignments, where treatment k for individual
i given by Dϕ

ik = Dik(µ
ϕ(θϕ, r)) is potentially a function of all room assignments of all individuals.

This allows us to estimate effects of general features of room assignments that are informative about
policies outside of our immediate institutional context. In treatment k represents a dorm-level
treatment assignment (such as inhabiting a highly gender-integrated dorm), the treatment is only
a function of an individual’s own room placement, so that we have Dϕ

ik = Dik(µ
ϕ
i (θϕ, r)), where the

individual’s own assignment is still a function of all individuals types and random tiebreakers. Peer
treatments are functions of both the individual’s room placement and that of others (roommates
and neighbors), which requires the more general notation Dik = Dik(µ

ϕ(θϕ, r)) where treatment is
a function of the entire vector of room assignments.

A contribution of this paper is to extend the setup of AANP to the case where we allow
for arbitrary mechanism-specific determinants of assignments (θϕ) for any mechanism that maps
from these determinants to assignments, µϕ(θϕ, r). As described by AANP, if all random and
nonrandom determinants of assignments are observed, room assignments can be simulated for any
mechanism that satisfies Equal Treatment of Equals (ETE), which requires that a mechanism gives
all individuals of the same type the same assignment probabilities for all treatments. As discussed
above, there is no guarantee in general that all determinants of assignments will be observed, and
it seems unlikely that we observe all determinants of assignments in our application. We thus make
a distinction between mechanisms that satisfy ETE generally and mechanisms that satisfy ETE
with respect to observables for assignment to treatment k, which are defined as those that satisfy
θϕi ⊆Wi and θϕi = θϕj =⇒ E[Dik|θϕ] = E[Djk|θϕ].

Mechanisms that satisfy ETE with respect to observables for assignment to treatment k can be
simulated to calculate ϕ-intended treatment assignments, Dϕ

ik, as well as expected ϕ-intended treat-
ment assignments, E[Dik|θϕ], for treatment k. These simulated values are sufficient to construct
conditionally exogeneous instruments for treatments, as we will discuss in the next subsection. Our
distinction between mechanisms that satisfy ETE with respect to observables and those that do not
allows, for instance, for cases in which a mechanism can be rightly said to satisfy equal treatment
of equals (which has normative implications) without the researcher being able to simulate the
mechanism, for instance due to data access limitations.5 Furthermore, a mechanism may satisfy
ETE with respect to observables for some treatments without doing so for other treatments. For
instance, if students are assigned to dorms via Random Serial Dictator and are then sorted into
rooms based on an unobserved trait (e.g. a preference for loud music known to Housing but not

4Related models in the school choice literature describe students’ types in terms of their preferences over schools
and the priorities they receive in schools. For a single mechanism, student traits such as gender can be modeled as
priorities rooms give to particular students. Such priorities could vary between mechanisms, however, so we opt to
model room preferences over students as part of the mechanism, which takes relevant student traits as inputs.

5For instance, if the true dorm assignment mechanism were Random Serial Dictator and Housing refused to provide
us with student dorm preferences, the mechanism would satisfy ETE, but would not satisfy ETE with respect to
observables.
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to the researcher) then assignments under this mechanism satisfy equal treatment of equals with
respect to observables for dorms but not for roommates. For such a mechanism, the methods we
describe would permit estimation of dorm level treatment effects without permitting estimation of
roommate level treatment effects.

3.2 Treatment Effect Estimation

Our empirical strategy is an intended intention to treat design, where we instrument for observed
treatments with simulated values under an assumed mechanism (ϕ-intended treatments) while
controlling for expected treatments implied by the same mechanism. In effect, we propose room
assignments for students according to a partially random mechanism, Housing may or may not take
up our proposed treatment assignments by passing them along to students, and students may or
may not take up the assignments passed along to them by Housing. The econometric arguments
are identical to those for standard intention to treatment instruments, where the takeup decision
is an outcome of an unmodeled bivariate choice made by Housing with each student.

A general representation of the outcome equations we will estimate is

Yi = βϕ0 + βϕkD
ϕ
ik + βϕE[Dϕ

ik|θ
ϕ] + εϕi , (2)

where Yi denotes an outcome of interest such as 4 year graduation, Dϕ
ik = Dik(µ

ϕ(θ, r)) is the
ϕ-intended treatment k such as the share of i’s roommates with different major STEM status,
E[Dϕ

ik|θ
ϕ] is the expected value of the ϕ-intended treatment for student i, and εϕi captures unmod-

eled determinants of outcomes. βϕ0 is a constant and the coefficient βϕk is the effect of ϕ-intended
treatment k. Conditioning on the expected value of treatment (the propensity score for binary
treatments) eliminates selection bias by siphoning out the variation in treatment that is nonran-
dom (Rosenbaum and Rubin, 1983; Hirano and Imbens, 2004).

Equation (2) allows consistent estimation of the effect of ϕ-intended treatment Dϕ
ik, but our

ultimate goal is estimation of the effect of realized treatment, Dik. To establish our connection to
the peer effects and school choice literatures, we begin with the special case of equation (2) that
makes use of the true assignment mechanism,

Yi = β∗0 + βkDik + β∗E[D∗ik|θ∗] + ε∗i , (3)

where we have leveraged the definition of the true mechanism to impose D∗ik = Dik. School choice
applications commonly estimate equations such as (3) by leveraging known mechanisms obtained
via qualitative methods, such as interviews with school assignment adminsitrators.6 In typical peer
effects applications, the true assignment mechanism is unknown, which prohibits calculation (via
simulation or otherwise) of E[D∗ik|θ∗]. It is sufficient in such settings to proxy for E[D∗ik|θ∗] with a
set of strata fixed effects δθ∗i , yielding the specification

Yi = β∗0 + βkDik + δθ∗i + ε∗i , (4)

which permits consistent estimation of βk if δθ∗i is properly specified (Rubin, 1977), at the cost of
potentially losing degrees of freedom if there are a large number of nonrandom determinants of
assignments.7

6School choice applications also frequently estimate intention to treat instrumental variables specifications, where
the true assignment is known such that assignment administrators always take up ∗-intended treatment assignments,
but students may not take up treatment assignments conveyed by adminitrators.

7A special case of assignment strata in the case of the peer effects literature is that individuals cannot be their own
peer, which implies that individuals with each own-trait value for peer traits of interest (e.g. STEM intended major)
face systematically different treatment probabilities. The common solution to control for individuals’ own traits is
sufficient to address this issue when fixed effects for values of individuals’ own traits are interacted with other strata
indicators.
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In our application, the true mechanism is not known, so we are confined to outcome equations
such as (2) that contain ϕ-intended and expected treatments for a proposed assignment mecha-
nism. As described above, the effects of ϕ-intended treatments can be consistently estimated in
this specification for an arbitrary mechanism. This parameter lacks immediate policy relevance,
despite its causal interpretation. However, following the same arguments as we give above for the
identification of the effect of Dϕ

ik on Yi, we can also identify the effect of Dϕ
ik on Dik from

Dik = γϕ0 + γϕkD
ϕ
ik + γϕE[Dϕ

ik|θ] + uϕi , (5)

where γϕk is the effect of ϕ-intended treatment k on realized treatment Dik.%
8 The equations (2)

and (5) together form the reduced form and first stage, respectively, of a just-identified instrumental
variables model. It follows from the identification of βϕk and γϕD that the effect of realized treatments
on outcomes is also identified as

βk =
βϕk
γϕk ,

under established instrumental variables assumptions.

3.3 Identification Assumptions

Because our empirical strategy uses intention to treat instrumental variables, we discuss our the
validity of our IVs with respect to the sufficient conditions described by Angrist et al. (1996). We
have concerns that some of these conditions do not hold in our setting, so we also discuss alternative
assumptions as needed.

The stable unit treatment value assumption (SUTVA) requires that modeled treatment assign-
ments mean the same thing for all individuals (Rubin, 1978, 1980, 1990). In the context of the
school/dorm choice model with intended intention to treat instruments calculated from a misspec-
ified assignment mechanism, this requires that each individual’s modeled ϕ-intended treatment
assignment and realized treatments are sufficient to define their treatments and outcomes. In our
application, this means that if an individual responds to a ϕ-intended STEM major roommate by
having a realized STEM roommate for some realization of the random tiebreaker vector (they take
up the intended treatment), then they must always respond to ϕ-intended STEM roommate by
having a realized STEM roommate. This is violated if individuals take up certain versions of in-
tended treatments but not others, for instance if an individual is a complier for ϕ-intended Biology
major roommate assignments but is a never-taker for ϕ-intended Engineering major roommate as-
signments. Similarly, SUTVA requires that outcomes are invariant to different varieties of modeled
treatments, for example requiring that Biology major roommates have the same effects on outcomes
as Engineering major roommates.9 SUTVA violations complicate expression of treatment effects
in terms of potential outcomes, and can contribute to inconsistent estimation of treatment effects
by implying exclusion violations, which we will discuss below.

The assumption of random assignment of ϕ-intended treatment assignments is satisfied, con-
ditional on expected ϕ-intended treatments, if the tiebreaker is truly random. If Housing altered
certain individuals’ tiebreakers after running an ETE assignment mechanism in order to ex-post
rationalize placing certain students in certain rooms, this assumption would be violated. This as-
sumption would similarly be violated if Housing “fished” for random number seeds that produce

8It is worth mentioning that the random tiebreaker, ri, can be used as an instrument in place of Dϕ
ik, with potential

for a weaker first stage.
9The commonly-invoked example of treatment spillovers in a special case of treatment varieties, in which, for

instance, having a STEM roommate who has STEM neighbors is a different variety of treatment than having a
STEM roommate who does not have STEM neighbors.
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room assignments that align with administrative objectives by rerunning the assignment mecha-
nism multiple times. We consider Housing’s admission that they overrule Random Serial Dictator
assignments in accordance with their judgment to actually be evidence against either of the above
violations of random assignment — if Housing wished for alternative assignments to those produced
by a random procedure, they could make them without resorting to convoluted antics regarding
the tiebreaker numbers. This assumption can be partially tested by checking whether obseved
covariates predict tiebreaker values, which we show against for our setting in Appendix A.

The exclusion restriction requires that ϕ-intended treatment assignments only affect outcomes
via realized peer or dorm traits. Three types of exclusion restriction violations come to mind. First,
exclusion is violated if there are announcement effects in which assignment to treatments produce
direct effects on outcomes, such as if preiminary interactions with a prospective STEM roommate
during the summer effect outcomes regardless of whether the student takes up their assigned room-
mate in the fall. Second, exclusion is violated if the university uses tiebreaker numbers or intended
treatments to inform non-housing treatment assignments, for instance if the university assigns
course instructors or time-slots jointly with residences. We discussed data uses with adminstrative
staff in the institution we study, and they emphasized that the residence hall data is not used for
any non-housing purposes. We also note that in the institution we study, Housing data on dorm
preferences, room assignments, and tiebreakers is kept in a separate data storage location with
different data security staff and different data access procedures than other administrative data,
which would make using this data for other purposes administratively difficult. Third, exclusion
is violated if the modeled treatment (e.g. having a STEM major roommate) consists of multiple
varieties of treatment with different treatment effects (e.g. having a Biology major roommate or
an Engineering major roommate), which occurs with SUTVA violations.

For exclusion violations in general, estimated treatment effects retain policy relevance if the un-
modeled channels (treatments) through which instruments drive outcomes in the sample are similar
to those in the population. We assume that announcement effects in which mechanism-intended
assignments affect outcomes separately from actual treatments are minimal and drive outcomes
similarly in our institutional context as they do elsewhere, and we assume housing assignments and
tiebreakers are not used for non-housing purposes.10 Regarding different varieties of treatment,
we assume our ϕ-intended treatment instruments satisfy uniform unordered monotonicity (Harris,
2022), which requires that instruments weakly increase the probability of receiving all unmodeled
varieties of treatments for all individuals. This avoids situations such as the case where receiving a
ϕ-intended STEM major roommate increases the probability of having a Biology major roommate
but decreases the probability of having an Engineering major roommate, in which the unmodeled
Engineering roommate effect receives negative weight in the modeled STEM roommate treatment
effect estimand. Because of market clearing conditions (there are a set number of individuals with
each major and a set number of room spots in each dorm), we do not expect our instruments to
systematically shift individuals between different varieties of the same treatment, and we have no
reason to expect such shifts within subpopulations with abnormal treatment effects. If individ-
uals in our sample take up unmodeled varieties of treatment in response to intended assignment
instruments proportinately to how individuals in the population take up varieties of treatment
in response to true assignment mechanisms, our treatment effect estimates will not only weakly-

10It is implausible that mechanism-intended treatment assignments from mechanisms we specify have announcement
effects if they do not correspond to summer assignments. Over 97% of students in our sample accept summer room
offers (Table B.1), so effects of summer-assigned peers are approximately indistinguishable from effects of realized
(fall term) peers. If other university settings have similar room offer takeup, then the technical exclusion violation
here is a policy-relevant one, where our IV estimates will provide (ceteris paribus) valid predictions of peer effects in
other settings.
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positively weight effects of all varieties of treatment, but will place weights on effects of treatment
varieties that correspond to the frequency of those treatment varieties in the population.

A related issue involving unmodeled heterogeneity is that of heterogeneous treatment effects,
which is typically addressed by the monotonicity assumption of Imbens and Angrist (1994). Mono-
tonicity requires that simulated peer or dorm assignments induce individuals into corresponding
realized treatment statuses without ever inducing any individuals out of those statuses. In our
context, monotonicity implies that zero students have opposite-signed mismatch between their
simulated peers and actual peers for all values of a simulated peer trait. This effectively rules out
the possibility of random mistakes in our simulation of room assignments.11 It also rules out the
possibility that some students are discontented with their initial room (or roommate) assignment
regardless of what it is, with the result being that they always request a new assignment before
the start of the year. We expect such students to be rare, because of 97% of students take up their
summer room offers, which we explore in Appendix B).

Instead of assuming strict monotonicity, we make the weaker alternative assumption that in-
struments that shift individuals into treatment on average do not shift subgroups of individuals
with significantly different treatment effects out of treatment, or between varieties of a treatment.
Within homogeneous treatments, this is the compliers-defiers condition of De Chaisemartin (2017).
The net uniform unordered monotonicity condition of Harris (2022) extends the observed multi-
ple treatment unordered monotonicity condition of Heckman and Pinto (2018) to the case with
multiple unobserved versions of treatment, and allows for defiers with non-extreme treatment ef-
fects similarly to the compliers-defiers condition of De Chaisemartin (2017). We have no reason
to expect our mechanism-intended treatment assignments to shift subgroups of individuals into or
out of treatment systematically in accordance with their effects of treatments, because we restrict
ourselves to mechanisms that make monotonic use of the random tiebreaker with respect to prefer-
ences — we impose that a higher value of ri weakly increases the expected value of the preference
rank of the assigned dorm and the room number in room order conditonal on receiving the same
dorm.

To see why this restriction helps with monotonicity, consider the case where true assignments
are done via Random Serial Dictator, and the researcher does not have access to student preferences
over dorms. It is possible to infer the aggregate popularity of dorms from the random tiebreakers of
their inhabitants, so it would possible to construct a common set of preferences for all students, and
to construct simulated treatment assignments and expected simulated treatment assignments using
Random Serial Dictator with the common set of preferences. Popular dorm treatment assignment
instruments constructed from this procedure will generally predict realized assignments to popular
dorms regardless of dorm preferences, because they encode the luckiness of each individual while
ignoring their true preferences. It follows that individuals who prefer unpopular dorms will be
defiers; if they get lucky random tiebreakers they will be erroneously assigned popular dorms,
and if they get unlucky random tiebreakers they will be erroneously assigned unpopular dorms.12

A selection-on-gains argument suggests that such individuals are likely to have lower treatment
effects from assignment to popular dorms, so this sort of monotonicity violation is a nontrivial
one. In simple terms, we assume that our simulated peer assignments will either match realized

11For instance, if a random 10% of students have actual peer assignments that differ from their simulated as-
signments (either because we make mistakes in matching the true assignment algorithm, or because administrative
personel make mistakes in implementing it), we would expect 1% (10% of 10%) of students to be defiers for binary
peer traits, because their simulated peers would differ from realized peers regardless of their simualted peer.

12The same problem arises when simply using the random tiebreaker as an instrument for treatment assignments
directly, which is otherwise a valid strategy, though it is likely to produce weaker IVs than simulating reasonable
mechanisms that make use of the room capacities of dorms and student preferences.
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peer assignments with respect to both modeled and unmodeled peer traits, or that they will fail to
match realized peer assignments nonsystematically.

The reelvance conditon requires that instruments meaningfully drive treatments. This requires
that the mechanism proposed by the researcher bears some resemblance to that used by the as-
signment administrators. Any mechanism that leverages the random tiebreaker is likely to satisfy
this condition in a strict sense, with the caveat that it may not if administrators don’t actually
use the random tiebreaker for assignments. Leveraging additional information correctly such as
room/dorm capacities or student preferences should improve the strength of the instrument. It is
possible to overfit the mechanism, with the extreme example being the case of using fixed effects
for each (unique) value of the random tiebreaker as instruments, which collapses the IV model in
(2) and (5) to a single linear regression of the outcome on the realized treatment. The next section
discusses a data driven procedure for choosing a mechanism while avoiding problems associated
with overfitting.

3.4 Instrument Selection

We begin the discussion of mechanism selection with a general representation of the problem, which
will establish a connection to the model selection literature. The key insight is that there are an
infinite number of potential mechanisms that we could propose for assigning students to dorm
rooms. It follows that there are an infinite number of valid simulated instruments for peer and
dorm assignments. These realizations lead us to instrumental variables model selection methods,
such as those described by Belloni et al. (2012) and Belloni et al. (2014). Broadly speaking, these
methods consider first stage equations that are similar to equation (5) that in principle allow for
an arbitrarily large number of instrumental variables, such as

Di = γ0 +

Φ∑
ϕ=1

(γϕDD
ϕ
i + γϕEE[Dϕ

i |θ
ϕ]) + ui, (6)

with ϕ = 1, 2, ...,Φ indexing the proposed room assignment mechanisms, with the important point
being that Φ >> N .

Existing instrument selection methods search over many specifications like those in equation
(6) and identify the one(s) that include the strongest instruments. While our problem is the
same on a fundamental level, we face nonstandard challenges relative to common applications that
use these methods for instrument selection. First, for us to construct an instrument, we must
conceive of (or identify in the literature) a room assignment mechanism, code the mechanism in
software, and run the code that generates instruments using the mechanism. This is costly in
terms of cognition, human time, and computational time. Secondly, restricting ourselves to a single
best-performing mechanism is particularly attractive for interpreting effects in the context of our
institutional setting.13 Finally, as we will discuss further in a moment, we are at particular risk of
overfitting equation (6) if we search over an arbitrary number of mechanisms.

The particular risk of overfitting in our application comes from each student receiving a unique
value of the tiebreaker, ri, with simulated room-spot assignments being a unique and deterministic
function of r and observables. The implication of this is that it is possible to construct simulated
instruments and expected simulated treatments from proposed mechanisms that (1) satisfy Equal

13In other words, using simulated instruments from a single mechanism that is established in the mechanism design
literature allows us to describe our reduced form effects from equations like (2) as “the effect of peers a person is
assigned under mechanism ϕ on outcome Yi”. The inclusion of instruments from multiple mechanisms weakens this
intuition in our view.
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Treatment of Equals, (2) perfectly rationalize all observed assignments, yielding a deterministic first
stage, and either (3a) explain all of the variation in actual treatments with simulated treatments,
generating seemingly strong instruments or (3b) explain all of the variation in actual treatments
with expected simulated treatments, generating weak instruments.

As an example of case (3a) above, consider the egregiously overfit mechanism ϕ = ∗∗ that
satisfies µ = µ∗(θ∗, r) = µ∗∗(r). This mechanism effectively observes the room-spot student i was
assigned and infers that any student assigned random tie-breaker ri in a counterfactual assignment
allocation would receive room-spot µi, such that µ∗∗j (ri) = µ∗∗i (ri) for all j 6= i. This mechanism
trivially satisfies ETE because all students have equal probabilities of all room assignments, imply-
ing that all students of the same type do as well. Because µi(θ, r) = µ∗∗i (r) for all i, it follows that
the first stage in (5) collapses to

Di =γ∗∗0 + γ∗∗DD
∗∗
i + γ∗∗E[D∗∗i |θ∗∗i ] + u∗∗i

=D∗∗i .
(7)

D∗∗i has an unboudnedly large F-statistic regardless of sample size, with the expected value of
simulated treatments playing no role in predicting actual treatment assignments. It is nonetheless
an irrelevant instrument, because it does not systematically predict assignments for any draw
of the random tiebreaker. There is minimal variation in E[D∗∗i |θ∗∗], so it will fail to capture
unobserved determinants of room assignments in (2) as well. It follows that implementing a two-
stage least squares regression using D∗∗i as an instrument for Di while controlling for E[D∗∗i |θ∗∗] is
approximately equivalent to the naive OLS specification

Yi = β0 + βkDik + ei, (8)

which is unlikely to identify causal estimates due to selection, as discussed above.14

As an example of case (3b) above where a deterministic mechanism produces weak instruments,
consider the deterministic-on-observables mechanism ϕ = θ that satisfies µ = µ∗(θ, r) = µθ(θθ),
where sufficient individual characteristics are contained in θθ to perfectly determine assignments.
This mechanism effectively observes the room spot i was assigned and infers that they must have
been nonrandomly assigned to that spot based on spot priorities over student characteristics, the
simplest case of which is that preferences are ignored, and each room spots give special priority
to the student that inhabits it. It follows that each individual would always be assigned their
actual room in any counterfactual assignment allocation, with µθi (θ

θ, r) = µθi (θ
θ, r′) for all i for any

alternative set of tiebreakers r′. In this case, the first stage in (5) collapses to

Di =γθ0 + γθDD
θ
i + γθE[Dθ

i |θθ] + uθi

=E[Dθ
i |θθ].

(9)

Here, Dθ
i is a weak instrument (with an F-statistic of zero regardless of sample size), with ex-

pected treatments completely explaining realized treatments. Dθ
i is perfectly collinear with E[Dθ

i |θθ]
so treatment effects in (2) are unidentified. We prefer mechanism θ to mechanism ∗∗ because it
honestly reports its usefulness with an F-stat of zero, but both mechanisms are inadequate for
treatment effect estimation.

14We say that instrumenting for Di with D∗∗i while controlling for E[D∗∗i |θ] is approximately equivalent to OLS
with no controls because E[D∗∗i |θ] still accounts for individuals’ inabilities to be their own peers. Each individual’s
value of E[D∗∗i |θ] will be constructed as the sample leave-one-out mean of D, which is similar to an OLS regression
controlling only for individual i’s own trait with no other room assignment strata indicators.
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In order to identify a mechanism that avoids overfitting while also predicting treatment assign-
ments, we place constraints on ourselves in our mechanism search. First, we interviewed University
Housing prior to attempting to rationalize observed assignments with any mechanism, and we
constrain ourselves to dorm assignment mechanisms that we discussed with them.15 Second, we
require that all candidate mechanisms make use only of characteristics that Housing told us they
use: random tiebreakers, gender, nontraditional student status, year of study, athlete status, learn-
ing community status, predetermined roommate status, and dorm preferences. Third, we restricted
ourselves to mechanisms that that are monotonic functions of random tiebreakers. Specifically, we
require that the preference rank of the dorm a student is assigned to is monotonically increasing
in the value of their random tiebreaker, ceteris paribus (early ranked students get their prefer-
ences over late students). Similarly, we also require that the position in mechanism-determined
order of the room a student is assigned is monotonicially increasing in the value of their random
tiebreaker conditional on dorm assignments (early ranked students are in “earlier” rooms, where
earlier is defined by each mechanism, for instance, by a lower room number). Fourth, we do not
explicitly target our peer or dorm treatments of interest, but instead we target all individual dorm
assignments and peer random tiebreaker assignments. .

4 Data and Institutional Details

To estimate peer effects, we use data on undergraduate students who live in dorms from 2016 to
2019 at the University of Wisconsin-Madison, a large, public research university, with outcomes
covering the same timespan. This administrative data contains information on the rooms students
live in for years in which they live in residence halls, as well as a wealth of baseline variables
such as gender, race, test scores, and intended majors. Additionally, it contains multiple imporant
outcomes, including 4-year graduation rates (for the 2016 cohort), freshmen retention (for all but
the 2019 cohort), graduation majors, and course grades (for all cohorts).Importantly, our data
contains the random tiebreaker and residence hall preference lists provided by students, which are
used to match them to their most-preferred dorms when possible.

Our empirical sample is formed of the subset of undergraduate students who live in dorm rooms
during the fall term of their first year that are assigned the preceding summer. There are 24,265
undergraduate students who live in dorms in their first fall which are assigned during the preceding
summer, of whom 17,972 have second year outcomes (retention and second year majors for those
retained) and 5,902 have four year outcomes (graduation and graduation majors for those who
graduate). We omit higher-year students from our sample even if they live in the dorms because
they are relatively rare, we expect peer exposure to affect them less than first-year students, and
because we observe many of them as first-years. Similarly, we omit first-year students who do
not receive university residence hall room assignments the summer before their first fall term (for
instance, due to submitting their dorm application late) because they are not included in the
university’s random room allocation process that is central to our empirical strategy.

The peer traits that we calculate are neighbor share female, roommate share STEM major
distance, average roommate ACT math score, average roommate ACT verbal score, and distances
between individuals own statuses and those of their roommates for ACT math and ACT verbal
scores. For each of these, distances are calculated by taking the absolute value difference between an

15This restriction was incentive compatible, as conducting this interview was much easier than coding a room
assignment mechanism.
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individual and the peer trait of each relevant peer, then averaging over these distances.16 Students
are coded to have a STEM major if their intended major on their college application matches a
major from the ICE list of STEM-designated majors (ICE, 2016). Students are coded as male or
female based on their self-reported gender to university administration. ACT Math is defined by
the score on the corresponding test, while ACT Verbal is the sum of the scores on the ACT Reading
test and the ACT English test.17 ACT scores come from administrative data, and we impute ACT
scores for students with missing scores using official SAT to ACT conversion tables for students
with SAT scores, and we impute scores using AP test count, AP test score average, high school
rank, high school class size, and high school GPA for students with neither ACT scores nor SAT
scores.

To estimate peer effects, it is necessary to identify students’ peers. Students’ roommates are
readily identified as those individuals occupying the same room at the same time as a given student.
To identify neighbors, we reference university blueprints and manually code x, y, and z coordinates
for the doorway for each room on campus using drafting software. We then calculate Manhattan
distances in inches between each room and every other room. This allows us to identify each room’s
nearest 3 rooms, the inhabitants of which are treated as neighbors for the student(s) in the room.

In addition to effects of exposure to various types of peers at the room level, we are also
interested in effects of dorm-level assignments. We are particularly interested in characteristics of
residence halls that are manipulable by university administrators, as these are most policy relevant
at both the university we study and others. With this in mind, we estimate effects of dorms that
are fully gender-integrated (men and women can live next door to one another), which we code as
“coed” in tables. As we show in Table 1, about 70% of dorms at Unviersity of Wisconsin-Madison
are fully gender-integrated, suggesting substantial scope for policy improvements if these dorms are
found to have either positive or negative effects on student outcomes.

Our empirical strategy will control explicitly for the expected values of treatments, so additional
controls are not necessary for identification of effects of interest. We will nonetheless include
controls in our preferred specifications in the interest of increasing statistical precision. We control
for gender, race, a nontraditional student indicator, a first generation college student indicator,
ACT math score, ACT verbal score, and intended-major fixed effects (2-digit Classification of
Instructional Programs codes). Summary statistics for the variables we use are available in Table
1.

5 Results

Our methods require selection of a mechanism to generate instrumental variables. We present
model selection results in Section 5.1. We present treatment effect estimates of peers and dorms in
Section 5.2, using instrumental variables generated from the chosen mechanism.

5.1 Mechanism Selection

We consider three dorm assignment mechanisms and three room assignment mechanisms that
condition on dorms being assigned according to the dorm mechanism that best rationalizes realized
dorm assignments. All of the mechanisms we consider have some common components. First, we
hold fixed rooms for individuals described by Housing as not being randomly assigned: athletes,

16In words, we calculate the average distance between individual i and their peers, not the distance between
individual i and their average peer.

17The SAT to ACT conversion table makes use of the same coding of the ACT Verbal score.
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Table 1: Descriptive Statistics

Mean SD
(1) (2)

First Term GPA 3.327 0.608
Freshmen Retention 0.957 0.204
4 Year Graduation 0.715 0.452
4 Year STEM Grad 0.292 0.455
Coed Dorm 0.697 0.460
Female 0.531 0.499
STEM 0.435 0.496
ACT Math 28.634 3.741
ACT Verbal 57.749 8.944
Nontraditional Student 0.016 0.125
In-State Student 0.556 0.497
First Generation Student 0.183 0.387
Asian 0.071 0.257
Black 0.018 0.132
Hispanic 0.056 0.230
White 0.707 0.455
Other Race 0.149 0.356
International 0.091 0.288
Fall 2016 Cohort 0.243 0.429
Fall 2017 Cohort 0.245 0.430
Fall 2018 Cohort 0.253 0.435
Fall 2019 Cohort 0.259 0.438
No Roommate 0.039 0.193
Random Room Assignment 0.691 0.462
Random Roommate Assignment 0.387 0.487

Observations 24265

Notes: Means and standard deviations for outcomes, peer traits, and controls for all first year students in dorms..
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nontraditional students, students in learning communities, and students with no recorded random
tiebreaker. These individuals will not contribute to dorm effect estimates because their expected
dorm is equal to their realized dorm. They may contribute to peer effect estimates because though
they are not randomly assigned to rooms, their roommates and neighbors may be. Second, following
advice from Housing, we place students in remaining dorms or room spots at random after all other
students are assigned if their preferences are insufficient to place them according to the other rules
of a mechanism. This is primarily relevant for individuals who do not provide complete preferences
on their dorm preference sheet.

We consider three dorm assignment mechanisms. First, we consider random serial dictator,
which assigns each individual to their preferred dorm if it is available, then to their next preferred,
and so on, in order ri = 1, 2, ..., N without reference to other individuals. Next, we consider the
Boston mechanism, which assigns individuals in order ri = 1, 2, ..., R to their 1st preferred dorm
if possible, otherwise skipping them. Then it repeats this for unassigned individuals for their 2nd
preferred dorm, and so on, until all students are assigned. Finally, because Housing reported
occasionally deviating from RSD in an effort to fill unpopular dorms with students who like them
relatively well, we consider a mechanism we call Boston→RSD which first assigns students to dorms
via Boston if and only if they are placed in an unpopular dorms, otherwise skipping them. After
all unpopular dorms are filled, this mechanism starts over and places remaining students in dorms
according to RSD.18

We also consider three room assignment mechanisms, conditional on dorms being assigned
according to the dorm mechanism that best rationalizes realized dorm assignments. The first,
which we term Room ID order, is that students are placed in rooms in ascending room ID order
as they are placed into a hall, where room ID is an administrative record that is distinct from
room numbers. The second, which we term Room # order, is that students are placed in rooms
in ascending room number order as they are placed into a hall, where room number is the publicly
observable number for each room (for instance displayed next to the door). Finally we consider a
Geographic order, which places students into rooms in a zig-zag using x and y coordinates for room
doorways, with ascending z (floor) order.19

Standard tests of instrument strength would estimate equations such as (6) and consider the
F-statistic associated with simulated instruments from each mechanism. We opt for an alternative
approach due to the computational intensity of calculating E[Dik(µ

ϕ(θ, r))|θ] for all i and k for each
mechanism. We estimate the following seemingly unrelated regression (SUR) model to evaluate
mechanism accuracy for all J dorms in j = 1, 2, ..., J for each dorm assignment mechanism,

Dormi,1 = αϕDormDorm
ϕ
i,1 + uϕi,1

Dormi,2 = αϕDormDorm
ϕ
i,2 + uϕi,2

...

Dormi,J = αϕDormDorm
ϕ
i,J + uϕi,J ,

(10)

18The gist of this mechanism is that it will place people in unpopular dorms if they rank them relatively highly,
regardless of their other dorm preferences. We suggested this mechanism to Housing after failing to match assignments
with both RSD and Boston, and they told us it loosely approximates the sort of ad hoc deviations they occassionally
make from the assignments implied by RSD. As shown in Table 2, it performs quite poorly.

19There are myriad plausible ways to code geographic room orders, all of which will produce very similar peer
assignments if they respect our monotonic tiebreaker constraint. Generally, all rotations and reflections of assignments
for symmetric dorms will produce identical peer assignments, while less extreme diversions (or approximations of such
diversions in asymmetrical dorms) will produce similar peer assignments. We consider only a single geographic order
rather than embarking on a specification hunt among many extremely similar mechanisms that explicitly replicate
tiebreaker clustering geographically with room assignment clustering.
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where we emphasize that the constant is constrained to 0 and all equations in the model are
constrained to share a single slope coefficient. αϕDorm has the attractive property of giving the
weighted average over of all dorms of the probability of individual i having a realized assignment
to dorm j conditional on having simulated assignment to dorm j. We similarly estimate accuracy
measures for peer tiebreakers as

ri,0 = αϕr r
ϕ
i,0 + δϕi,0 + uϕi,0

ri,1−3 = αϕr r
ϕ
i,1−3 + δϕi,1−3 + uϕi,1−3

ri,4−7 = αϕr r
ϕ
i,4−7 + δϕi,4−7 + uϕi,4−7,

(11)

where ri,0 gives the average tiebreaker for individual i’s realized roommate, ri,1−3 gives the same
for next door neighbors, ri,4−7 gives the same for the next nearest neighbors. The ϕ superscript
gives the same values for simulated assignments, with δϕi denoting simulated dorm fixed effects. We
report dorm assignment mechanism accuracy, αϕDorm, in Panel 1 of Table 2 and room assignment
mechanism accuracy, αϕr , in Panel 2 of Table 2 for all the mechanisms we consider.

Table 2: Mechanism Selection

Random 1 Random 2 2016 2017-2019 Total
(1) (2) (3) (4) (5)

Panel 1: Dorm Assignments
RSD 0.865 0.878 0.961 0.852 0.872

(0.001) (0.001) (0.001) (0.001) (0.001)
Boston 0.802 0.826 0.852 0.808 0.811

(0.002) (0.002) (0.002) (0.001) (0.001)
Boston → RSD 0.676 0.692 0.742 0.679 0.684

(0.002) (0.002) (0.003) (0.002) (0.001)
Observations 8427 8427 3968 12886 16854

Panel 2: Peer Assignments
Room ID 0.500 0.432 0.413 0.444 0.437

(0.006) (0.006) (0.008) (0.005) (0.004)
Room # 0.515 0.445 0.425 0.459 0.451

(0.006) (0.006) (0.008) (0.005) (0.004)
Geographic 0.511 0.437 0.426 0.450 0.445

(0.006) (0.006) (0.008) (0.005) (0.004)
Observations 7659 7672 3705 11626 15331

Notes: Mechanism accuracy for dorms as measured by αϕ
Dorm from the seemingly unrelated regression model (10) in

Panel 1 and mechanism accuracy for rooms as measured by αϕ
r from the seemingly unrelated regression model (11)

in Panel 2. Mechanism details are described in the text. Robust standard errors of accuracy statistics in parentheses.

In the interest of thoroughness, we cross-validate mechanism accuracy for 5 subsets of students in
our data who are randomly assigned to dorms and rooms (where we keep only those with roommates
for the room assignment accuracy). The Random 1 and Random 2 samples are randomly chosen
mutually exclusive halves of all randomly assigned students. We also consider 2016 (a year when
University Housing staff reported they exercised less judgment in room assignments) separately from
later years (when Housing staff exercised more judgment in room assignments). Finally, we also
calculate accuracy for the entire sample of randomly-assigned students. We choose mechanisms with
the highest accuracy measures, RSD and Room #, for the total sample to construct instruments
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for inclusion in instrumental variables models described by equations (5) and (2), but we are
encouraged by the cross-sample consistency in accuracy-maximizing mechanisms. We find that
Random Serial Dictator is the best dorm assignment mechanism, with Room # order being the
best room assignment mechanism — though all room assignment mechanisms have very similar
accuracy. We note that we have smaller samples for accuracy measures because we only test
accuracy for individuals who are randomly assigned to rooms, while the sample shrinks further for
room accuracy checks because they rely on simulated and realized roommates, which are missing
for individuals in single person rooms.

Our selected mechanisms produce simulated and expected dorm and peer treatment assignment
statuses described in Table 3. There are two main takeaways from this table. First, our expected,
simulated, and realized assignments have almost identical means for all variables.20 Second, re-
alized and simulated treatments have significantly more variance than expected treatments. Our
identification strategy uses residual variation that is common to both simulated and realized treat-
ments after conditioning on expected treatments to identify effects, so relatively low variance in
expected treatments is good news.21

5.2 Treatment Effect Estimates

In this section we present treatment effect estimates for dorm and peer treatment assignments. In
general, we estimate instrumental variables models that take the form

Yi = β0 + βkDik + βE[Dϕ
ik|θ

ϕ] + εi,

Dik = γϕ0 + γϕkD
ϕ
ik + γϕE[Dϕ

ik|θ
ϕ] + uϕi .

by two stage least squares, giving estimates of linear marginal effects of peer/dorm assignment k on
outcome Y . We investigate effects of dorm coeducational status, neighbor gender, and roommate
ACT scores and intended majors.

In general, we estimate models with a single treatment variable (or with an own trait interac-
tion), rather than combining all treatments into a single model. If peer traits are correlated (they
are), these specifications give easily interpretable policy relevant total effects of a particular peer
or dorm trait on a particular outcome.22 Such estimates are sufficient statistics for predicting the
effect of counterfactual increases/decreases in assignments to a particular type or dorm or peer
for a given outcome. Richer models with multiple treatments do not immediately inform likely ef-
fects of policies that change dorm/peer assignments with respect to single (for instance statistically

20This is approximately true by construction as there is only one pool of students, though different realizations
of assignments may differ in which students are placed in single-person rooms or rooms with more than two people,
where their traits will receive less weight. Additionally, Housing sometimes changes the number of students in a room
between summer assignments and fall assignments. Our realized treatments take room occupancy values values from
fall assignments while our expected and simulated treatments take them from summer assignments. More extreme
differences can occur with nonlinear peer traits, such as the peer trait distances measures (these could be set to zero
for all students, in principle).

21A non-stratified RCT would produce approximately zero variance in expected treatments. In our application,
expected treatments explain well over half of the variation in realized treatments, suggesting that most of the variation
in peer and dorm assignments is driven by selection.

22Strictly speaking, these specifications are likely to produce exclusion restriction violations in the sense that the
modeled trait is correlated with unmodeled traits that are contained in the error term. If the covariances between
the modeled trait and unmodeled traits in our dataset are representative of those in the population, these total
effect estimates retain external validity. This issue is ubiquitous in instrumental variables estimation. For instance,
the effects of charter schools estimated by Abdulkadiroğlu et al. (2017) similarly are partially driven by in-sample
covariances between charter school status and other unmodeled school characteristics (insofar as other characteristics
have effects). One principled way to dispute findings from such studies (including ours) is to suggest that these
in-sample covariances are significantly different in the research sample than they are in the population.
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Table 3: Treatment Assignment Description

Mean SD
(1) (2)

Coed Dorm 0.697 0.460
Simulated Coed Dorm 0.698 0.459
Expected Coed Dorm 0.698 0.370
Neighbor Female Share 0.521 0.368
Simulated Neighbor Female Share 0.518 0.371
Expected Neighbor Female Share 0.518 0.289
Roommate STEM 0.434 0.489
Simulated Roommate STEM 0.429 0.485
Expected Roommate STEM 0.430 0.382
Roommate STEM Distance 0.412 0.485
Simulated Roommate STEM Distance 0.424 0.484
Expected Roommate STEM Distance 0.423 0.381
Roommate ACT Math 28.650 3.676
Simulated Roommate ACT Math 28.647 3.648
Expected Roommate ACT Math 28.645 2.982
Roommate ACT Math Distance 3.643 2.857
Simulated Roommate ACT Math Distance 3.661 2.850
Expected Roommate ACT Math Distance 3.689 2.361
Roommate ACT Verbal 57.805 8.648
Simulated Roommate ACT Verbal 57.764 8.614
Expected Roommate ACT Verbal 57.760 6.877
Roommate ACT Verbal Distance 8.804 7.209
Simulated Roommate ACT Verbal Distance 8.877 7.189
Expected Roommate ACT Verbal Distance 8.920 5.958
No Roommate 0.039 0.193
No Simulated Roommate 0.047 0.211

Observations 24265

Notes: Summary statistics for treatment variables as well as simulated treatments and expected simulated treatments
from best-fitting mechanism (RSD assignments to dorms, Room # order assignments to rooms).

19



significant) trait, because they estimate partial effects of assignment to many types of dorms and
peers conditional on other traits being held fixed. In other words, our specifications can be readily
used to answer questions of the form “what would happen if we assigned x more individuals to y
type dorms/peers?”, while specifications with multiple treatments cannot (additional information
about covariances between peer and dorm traits is needed to use them for such predictions).

The question stated in the preceding paragraph is not policy relevant if relevant counterfactual
policies are not feasible. In general, inelastically supplied treatments with homogeneous effects
might not produce benefits by being redistributed, and the information needed to effectively re-
distribute them is not available if their effects are estimated in (misspecified) homogeneous effects
models. Main effects of our treatments, therefore, are policy relevant to the situation in which dorms
or peers with particular traits are not inelastically supplied. The implication of this for our applica-
tion is that homogenous treatment effect specifications inform university policies that increase the
availability of particular dorm or peer treatments, for instance by converting non-gender-integrated
dorms into gender-integrated dorms, or by admitting more students with particular characteristics
to the university (or assigning more of such students to university housing). In general, we consider
such single effect specifications to be relevant for dorm effects, but to not be particularly relevant
for peer effects.23

We show in Table 4 the effects of living in coeducational (highly gender-integrated) dorms on
a range of academic outcomes. Of particular note, we find positive effects on four-year graduation
rates (10.7 percentage points) and STEM graduation rates (14.6 percentage points) for men from
inhabiting a coed dorm relative to a non-coed dorm. We find no evidence of positive or negative
effects for women for four-year graduation, or for either men or women for other outcomes of
interest. One policy implication from this result is that increasing the number of coeducational
dorms on campus should be expected to increase male four-year (STEM) graduation rates without
substantially affecting women. An alternative implication is that similar gains could be made by
assigning all men to the existing coeducational dorms, while housing women in the less gender-
integrated dorms as needed. While it is possible that the effects of coed dorms are unrelated
to their gender compositions (which would raise concerns about external validity) or that they
are nonlinearly related to their gender compositions, we are doubtful that such a counterfactual
arrangement would preserve the mechanisms that are present within our sample through which
coed dorms increase graduation rates for men.24

For peer effects specifications, we estimate models that include peer traits alongside own-trait
interactions with peer traits. In these models, the main effect is of relatively little interest, while
the interaction answers questions of the form “how much would outcome y change if we assigned a
peer with trait x to an individual with that same trait instead of an individual without it?”. For
binary peer traits, the coefficient on the uninteracted term in these specifications gives the increase
in an outcome for the group that lacks the trait. If there is a particular interest in increasing the
outcome for this particular group (for instance to address preexisting inequalities), then these effects
are policy-relevant. If only aggregate changes in outcomes are policy interest, then a significant
(economically or statistically) effect for a particular group produces no relevant implications unless

23Even if a given university were to admit additional students with a particular trait (e.g. high verbal ACT scores)
based on our findings or other insights, it is likely that any net benefits accrued by the university would be offset
by negative effects on these students’ second-most-preferred universities. It is possible that universities competing
over students who produce desirable peer effects may improve market efficiency (for instance by increasing college
attendance rates among such students due to increases in college-provided financial aid), but we expect these effects
to be second order relative to benefits from selection-on-gains types of policies that leverage heterogeneous treatment
effects to assign peers to students they will particularly benefit.

24The extreme case in which “coed” dorms are exclusively inhabited by men strikes us as a stark example of a
policy that would be subject to the Lucas (1976) critique.
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some other group has a different effect (with this information conveyed by the estimated effect of
the interaction term).

We show effects of the share of neighbors that are female in Table 5. We find statistically
insignificant point estimates that are consistent with our findings for coeducational dorms, suggest-
ing that exposure to female neighbors may improve freshmen retention, and four-year graduation
for men, with no offsetting negative effects for women (though these estimates are all statistically
insignificant at conventional levels). We also find that female neighbors increase STEM majors
among individuals who graduate, though these effects are not significantly different for men and
women. The lack of statistical significance on differences in effects between men and women suggests
limited scope to increase aggregate STEM graduation rates, but the statistically significant main
effect does suggest that increases in gender segregation may reduce the STEM major gender gap
(increasing STEM majors among graduating women and decreasing them among graduating men).
We note that we have significantly less power to estimate effects of neighbors relative to dorms, as
our preferred mechanism is approximately 87% accurate for dorm assignments, while being only
45% accurate for peer assignments (shown in Table 2). This is reflected in the substantially lower
F-statistics for neighbor traits as compared to dorm assignments.

We next turn to effects of academic traits of roommates, with results shown in Table 6. We
find that assignment to a STEM roommate statistically insignificantly reduces four-year graduation
rates for non-STEM individuals, but that it has statistically-significantly smaller negative effects
(by 8 percentage points) on STEM individuals. A statistically significant interaction effect in
the opposite direction of a statistically insignificant main effect may seem to be of questionable
policy relevance, but we reiterate our point above that the interaction effects are substantially
more policy relevant than main effects because they are sufficient to predict aggregate effects of
counterfactual peer assignments. Specifically, we would expect that assigning all STEM students
to each other as peers would produce aggregate four-year graduation rates 3.1 percentage points
higher than the alternative extreme case of assigning no STEM students to each other as peers,
and 1.5 percentage points higher than the existing allocation, in which 52% of students with STEM
intended majors have roommates with STEM intended majors. We find that receiving a peer
with a standard deviation higher ACT math score has a statistically significant but economically
insignificant differential effect on individuals with higher ACT math scores than those with low
scores. We also find large and imprecise positive effects of assignment to roommates with high
ACT verbal scores.

We have substantially less power to estimate effects of roommate traits, both because of our
room assignment mechanism’s poor accuracy for peer assignments relative to dorm assignments, and
because only 39% of students in our sample are randomly assigned to roommates, approximately
10% of whom (4% of the total sample) receive no roommate due to being placed in a single-
occupancy room. This is readily seen in our relatively low F-statistics in these models, which range
from 71 for outcomes for which we observe a large portion of the sample to 6 for outcomes that we
only observe for the 2016 incoming freshmen cohort. Our point estimates on ACT scores are in line
with some past results such as those of Zimmerman (2003) which find relatively larger effects for
verbal scores relative to math scores, though in our setting these effects are imprecisely estimated.

Interactions between own traits and peer traits allow for one form of policy-relevant heterogene-
ity in treatment effects. We also consider the distances between individuals’ academic traits and
those of their roommates. This allows us to directly answer questions regarding whether students
should be clustered among peers of their own type or whether they should be exposed to peers who
are different from them. For binary traits (such as gender and STEM major), an individual’s peer
trait distance is a deterministic function of the peer trait of interest and the interaction between
their own trait and the peer trait — implying that estimates of effects of peer trait distances will
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be similar to those obtained in the models with interactions described above. For traits where an
individual’s peers may have either higher or lower values of a trait than an individual, specifications
that model effects of distances between traits convey unique information about potentially policy
relevant nonlinearities in effects.

To see the potential value of individual-peer trait distance specifications relative to specifications
with interactions, it is helpful to consider a DGP where the distance between an individual’s trait
and those of her peers drives outcomes for all types of individuals, but there are no linear effects
for any group. To fix ideas for this example, we proceed with the simplifying assumption that
each individual’s expected peer trait is the same as their own trait, and we consider individuals
at only two values of the trait (though their peers may have any value). Example data from this
sort of model for an outcome Y and peer trait xj is shown in Panel 1 of Figure 1. With such a
DGP, it is tempting to conclude that the estimated effect of the own trait peer trait interaction in
a model that includes this term alongside a peer trait main effect will yield a positive coefficient,
as high trait individuals are particularly strongly affected by being assigned high trait peers (these
matches have low trait distances). This ignores, however, that the identification strategy relies
on controlling for expected peer traits. Controlling for expected peer traits produces a coefficient
on the own-trait-peer-trait interaction that is driven by the comparison of outcomes between low
trait individuals who are assigned to peers with higher or lower than expected traits and high trait
individuals who are assigned to peers with higher or lower than expected traits. In other words,
even though high trait individuals’ peers have high traits more often than low trait individuals’
peers, they do not have higher-than-expected traits more often. Controlling for expected peers
in this scenario conditions out the variation in peer traits that would allow a negative peer trait
distance effect to be captured by an own-trait-peer-trait interaction.25

The results on distances between individual’s traits and their peer traits are shown in Table 7.
We do not find statistically significant impacts for any trait considered. Interestingly, we obtain
negative point estimates for roommate ACT Verbal score distance that are similar in magnitude to
the positive main effects of ACT verbal scores in Table 6. Also, there are no significant differences
in effects estimated in models that also include a linear term for average roommate ACT verbal
scores.26 Taking the narrowly insignificant effect of standard deviation increases in peer ACT
verbal distance on freshmen retention at face value produces a prediction that assigning all students
to roommates with identical verbal ACT scores (an approximately feasible policy) would increase
freshmen retention by 8.8 percentage points, which would (implausibly) predict aggregate freshmen
retention of 104.5%. The potential for large effects from feasible policy interventions regarding this
trait is compelling, and we feel warrants future research on the role of peer verbal skill differences in
determining outcomes, especially insofar as assignment to homogeneous groups has been previously
found to increase academic achievement in classroom settings, for instance by Duflo et al. (2011)
A potential explanation for such effects is that students communicate more easily with peers with
similar verbal skills, and that effective communication between peers fosters incresased educational
success and increases the amenity value of staying in school and facilitate coursework cooperation.

25The intuition that an interaction term will capture effects of distances between individuals’ traits and those of
their peers is correct for binary treatments for which all individuals have the same expected peer traits — an ex ante
unlikely scenario that is at odds with the positive standard deviations on expected peer traits shown in Table 1.

26The minimal impact of also including main effects of peer traits alongside distances on estimates of distance
effects is predictable. For students whose expected peer’s trait is the same as their own trait, the correlation between
peer trait distances and peer traits is mechanically driven toward zero when conditioning on expected traits — distant
peers cannot have traits that are systematically higher than expected or lower than expected.
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Table 4: Dorm Effects

First Term GPA Freshmen Retention 4 Year Graduation 4 Year STEM Grad
(1) (2) (3) (4) (5) (6) (7) (8)

Coed Dorm -0.017 0.017 0.001 0.014 0.041 0.107∗ 0.048 0.146∗∗∗

(0.025) (0.046) (0.010) (0.017) (0.034) (0.063) (0.030) (0.055)
Female × Coed Dorm -0.056 -0.021 -0.104 -0.154∗∗

(0.054) (0.021) (0.074) (0.065)
1st Stage F-stat 2115.449 366.931 1544.419 302.360 923.755 142.790 923.755 142.790

Mean of outcome 3.327 3.327 0.957 0.957 0.715 0.715 0.292 0.292
Observations 24265 24265 17972 17972 5902 5902 5902 5902

Notes: Effects of dorm assignments estimated via 2SLS instrumenting for realized assignments with simulated assignments. All specifications control
for expected values of simulated instruments, controls listed in Table 1, and intended major fixed effects. Robust standard errors in parentheses.
*/**/*** denote significance at the 90, 95, and 99 percentage confidence levels.

Table 5: Effects of Peer Gender

First Term GPA Freshmen Retention 4 Year Graduation 4 Year STEM Grad
(1) (2) (3) (4) (5) (6) (7) (8)

% Neighbor Female 0.041 0.062 0.018 0.028 0.061 0.111 0.190∗∗ 0.223∗

(0.071) (0.112) (0.028) (0.039) (0.086) (0.134) (0.080) (0.128)
Female × % Neighbor Female -0.044 -0.023 -0.088 -0.071

(0.144) (0.055) (0.175) (0.161)
1st Stage F-stat 474.531 236.057 329.546 75.264 198.845 54.876 198.845 54.876
Mean of outcome 3.327 3.327 0.957 0.957 0.715 0.715 0.292 0.292
Observations 24265 24265 17972 17972 5902 5902 5902 5902

Notes: Effects of gender composition of next door neighbors estimated via 2SLS instrumenting for realized peers with simulated peers. All specifications
control for expected values of simulated instruments, controls listed in Table 1, and intended major fixed effects. Robust standard errors in parentheses.
*/**/*** denote significance at the 90, 95, and 99 percentage confidence levels.
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Table 6: Effects of Peer Academic Traits

First Term GPA Freshmen Retention 4 Year Graduation 4 Year STEM Grad
(1) (2) (3) (4) (5) (6) (7) (8)

Roommate STEM -0.007 -0.029 0.003 -0.001 -0.041 -0.092 0.054 0.085
(0.175) (0.175) (0.075) (0.075) (0.243) (0.241) (0.231) (0.227)

× STEM 0.036 0.007 0.080∗∗ -0.049
(0.023) (0.009) (0.036) (0.035)

1st Stage F-stat 71.162 35.678 42.848 21.514 24.745 12.457 24.745 12.457
Roommate ACT Math -0.124 -0.126 0.001 0.003 0.072 0.072 0.093 0.093

(0.087) (0.087) (0.032) (0.033) (0.114) (0.114) (0.111) (0.111)
× ACT Math 0.006 -0.004∗∗ -0.002 0.002

(0.005) (0.002) (0.007) (0.007)
1st Stage F-stat 62.962 31.394 55.713 27.578 22.506 11.282 22.506 11.282
Roommate ACT Verbal 0.103 0.103 0.055 0.055 0.344∗ 0.339∗ 0.145 0.142

(0.085) (0.085) (0.035) (0.035) (0.189) (0.187) (0.145) (0.144)
× ACT Verbal 0.008 0.000 -0.025∗ -0.012

(0.005) (0.002) (0.014) (0.010)
1st Stage F-stat 52.549 26.310 40.797 20.426 12.795 6.436 12.795 6.436
Mean of outcome 3.330 3.330 0.957 0.957 0.718 0.718 0.290 0.290
Observations 22970 22970 16986 16986 5602 5602 5602 5602

Notes: Effects of peer academic traits of roommates estimated via 2SLS instrumenting for realized peers with simulated peers. All specifications
control for expected values of simulated instruments, controls listed in Table 1, and intended major fixed effects. STEM is a binary indicator for having
a STEM intended major, while ACT scores are normalized to have unit standard deviations. Robust standard errors in parentheses. Individuals with
no roommates or no simulated roommates are dropped. */**/*** denote significance at the 90, 95, and 99 percentage confidence levels.
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Figure 1: Example Data for Peer Trait Distances

Panel A

xj

Y

xL xh

Panel B

εxj

εy

Notes: Graphical representation of example data where outcomes are determined only by the individual’s own trait
and distances between an individual’s trait and the same trait of their peers. Panel A shows a scatter plot of raw
data for two types of individuals, with type L defined as xi = xL shown as circles and type H defined as xi = xH
shown as x’s, under the simplifying assumption that E[xj |xi] = xi (each point could in principle represent any number
of observations, with the caveat that the expected value for each group be unchanged). Panel B shows the Frisch-
Waugh-Lovell residuals after controlling for the expected value of peer traits. It is apparent from Panel B that a linear
regression of the outcome on peer traits, controlling for expected peer traits, will fail to uncover an economically
significant relationship (regardless of interactions included in the model), while a distance-between-traits specification
will succeed.
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Table 7: Effects of Peer Academic Diversity

First Term GPA Freshmen Retention 4 Year Graduation 4 Year STEM Grad
(1) (2) (3) (4) (5) (6) (7) (8)

Roommate ACT Math Distance 0.054 0.043 0.005 0.005 0.034 0.030 0.127 0.119
(0.097) (0.102) (0.035) (0.037) (0.132) (0.134) (0.129) (0.131)

Roommate ACT Math -0.117 0.002 0.073 0.094
(0.090) (0.035) (0.114) (0.112)

1st Stage F-stat 69.822 20.215 63.319 16.404 22.468 7.741 22.468 7.741
Roommate ACT Verbal Distance -0.136 -0.114 -0.076 -0.061 -0.097 -0.168 -0.183 -0.215

(0.108) (0.108) (0.047) (0.049) (0.226) (0.296) (0.205) (0.239)
Roommate ACT Verbal 0.081 0.040 0.359∗ 0.160

(0.086) (0.037) (0.207) (0.166)
1st Stage F-stat 44.443 15.447 31.617 20.588 8.992 1.863 8.992 1.863
Mean of outcome 3.330 3.330 0.957 0.957 0.718 0.718 0.290 0.290
Observations 22970 22970 16986 16986 5602 5602 5602 5602

Notes: Effects of ACT score distances between roommates estimated via 2SLS instrumenting for realized peers with simulated peers. All specifications
control for expected values of simulated instruments, controls listed in Table 1, and intended major fixed effects. ACT scores are normalized to have
unit standard deviations, so distance effects give predictions of a peer with a one standard deviation higher or lower ACT score. Robust standard
errors in parentheses. Individuals with no roommates or no simulated roommates are dropped. */**/*** denote significance at the 90, 95, and 99
percentage confidence levels.

26



6 Conclusion

This paper reports estimates of peer and dorm effects using a sample drawn from University of
Wisconsin-Madison, a large public four-year university. We overcome substantial empirical chal-
lenges resulting from selection into dorms and peers by implementing an intent-to-intent-to-treat
instrumental variables strategy that, vitally, is robust to misspecification of the unviersity’s room
assignment mechanism. Our methodological contribution is to extend methods commonly employed
in the school choice literature to a setting where researcher-proposed treatment assignment mecha-
nisms fail to replicate realized assignments. We perform a straightofrward model selection exercise
which identifies a best-performing mechanism without requiring the computationally demanding
simulation of expected treatments under alternative mechanisms. This method has potential to be
of use in similar school (etc) choice settings in which researchers are unaware of assignment mech-
anisms used by central planners (or in which central planners do not explicitly use a consistent
mechansim). More generally, our model selection procedure can be used to choose between alter-
native economic models which produce different predictions for realized and expected treatments
in implementations of the instrumental variables methods described by Borusyak and Hull (2020).

Substantively, we find that highly gender-integrated dorms increase four-year graduation rates
for men, while STEM peers reduce four-year graduation rates less for STEM individuals than for
non-STEM individuals. We find promising suggestive evidence (falling short of conventional signifi-
cance thresholds) that female neighbors increase freshmen retention for men and that high distance
between ACT verbal scores reduces freshmen retention. Taken together, our findings suggest signifi-
cant potential increases in freshmen retention and four-year graduation from approximately costless
counterfactual room assignment mechanisms. Specifically, we predict that converting all dorms to
be highly-gender integrated and exclusively assigning STEM students to each other as roommates
would increase aggregate four-year graduation rates by approximately 3 percentage points relative
to baseline.27

Our findings on gender effects complement a large literature that generally finds positive effects
of girls and women on the educational outcomes of their peers. We acknowledge that our findings on
the effects of coeducational dorms are identified off of the fourteen highly-gender-integrated dorms
contained within our sample. With this small number of dorms, it is possible that an alternative
amenity shared by coed dorms on campus is the true driver of outcomes. Future research estimating
effects of gender-integration in dorms on outcomes at other universities would address this concern.

Our finding of aggregate benefits from clustering STEM individuals together as roommates
complements some similar findings in the peer effects literature. For instance, Booij et al. (2017)
find that group homogeneity of tutorial (study) groups improved performance among students at an
economics and business school. Similarly, Duflo et al. (2011) find that students in Kenya benefitted
from being in classroom environments with similar-ability peers. We broadly replicate these findings
for effects of homogeneity of academic interests (STEM vs. non-STEM roommates) in addition to
academic ability (distances between roommates ACT verbal scores), while also showing that they
hold in residential settings in addition to classrooms and study groups. We expect these results
to be particularly externally valid in other settings that use similar measures of STEM academic
interests (and in which student’s majors within STEM are similar) and verbal skills, such as other
universities in the United States. We see no reason to expect substantial differences in effects
for alternative measures of STEM interests or verbal skills, but studies at other universities could
shed light on this. Along these lines, if students were to intentionally alter their verbal test scores

27Driven by a 30 percentage point increase in coed dorm assignments affecting 50% of the student population
(males) by at a rate of 0.1, and a 48 percentage point increase in STEM roommate propensities affecting 43% of the
student population (STEM individuals) at a rate of 0.07.
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or (more plausibly) their reported intended majors to the university in an attempt to receive a
particular peer assignment, this could invalidate the predictions from estimates. If universities do
not publically (or even privately, as in the case of the university we study) reveal the details of their
room assignment mechanisms, we expect that this sort of gaming by students will be unlikely.

We are particularly optimistic regarding the external validity of our findings. First, we estimate
effects in a large public four-year university. Even if our findings are not generalizable to educational
residential accommodations in other contexts (which they may be), we expect them to be gener-
alizable to similar universities, which educate and house a large share of undergraduate students.
Second, many of the counterfactual room assignment policies we discuss occur naturally within the
support of our data. As discussed by Booij et al. (2017) and starkly investigated by Carrell et al.
(2013), extrapolation outside of the support of data relies on potentially invalid functional form
assumptions. Our estimates suggest potentially large effects from increases in the number of highly
gender-integrated dorms as well as from clustering STEM students with each other as roommates.
Even larger effects may be possible with clustering on verbal ACT scores, though are estimates are
insufficient to predict effects of this sort of policy with certainty. Corroboration of these point esti-
mates in other settings would potentially reduce this uncertainty, with substantial social benefits,
though the consistency between our results and those of Duflo et al. (2011) and Booij et al. (2017)
may be sufficient to motivate trials of such policies by university housing adminsitrators.
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Appendix

A Tiebreaker Randomization Check

The key to our research design is the randomization of room assignment tiebreakers, which are
used in conjunction with student preferences to assign students to rooms. If tiebreakers are not
actually random, our identification strategy is not valid. We note that Housing staff has told us
that tiebreakers are random, while also telling us that their official policy is that staff judgment
in assignments trumps any deference to the random allocation mechanism. It therefore seems
to us that Housing has no incentive to doctor the random numbers to benefit some groups over
others, even if they did have an interest in giving certain groups particularly advantageous room
assignments.

To address the possibility of nonrandom tiebreaker numbers, we perform randomization checks
by regressing random tiebreakers on the observed student characteristics described in Table 1. We
report β coefficients from year-specific regressions of the form

ri = Xiβ + εi,

where we test the null hypothesis that β = 0 for every element of Xi other than the constant.
Results are shown in Table A.1. Among 48 coefficients of interest, four are significant at

the 95% confidence level and eight are significant at the 90% confidence level. At both levels of
significance, we observe more statistically significant effects than would be expected with perfect
randomization of tiebreakers (2.5 and 5). This is cause for concern. However, we note that the
baseline characteristics that predict tiebreaker values do not have consistent signs, which suggests
a lack of systematic bias
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Table A.1: Initial Room Assignment Take-up by Student Type

2016 2017 2018 2019
(1) (2) (3) (4)

Female 141.7∗ -5.682 -59.01 22.71
(79.01) (80.35) (77.17) (76.90)

STEM 21.50 13.84 -32.14 -99.17
(80.36) (80.28) (77.31) (75.09)

ACT Math 29.50∗∗ -8.882 -14.55 -2.817
(12.56) (12.93) (11.75) (11.33)

ACT Verbal -5.628 8.257∗ 3.163 -8.251∗

(5.146) (4.337) (5.215) (4.911)
Nontraditional 299.0 -185.2 76.96 640.0

(312.2) (275.5) (319.2) (489.3)
In-State 127.1 149.1∗ -71.98 127.6

(83.82) (84.39) (80.23) (77.76)
First Generation 67.79 -18.86 -10.09 10.03

(105.5) (106.0) (91.54) (100.9)
Asian -373.6∗ 282.0 375.5∗∗ -342.4∗∗

(197.0) (200.6) (182.9) (167.5)
Black 185.1 204.6 439.5 381.2

(306.8) (294.6) (306.1) (320.6)
Hispanic 88.53 97.36 270.3 -307.1

(218.0) (221.9) (203.8) (196.8)
White 134.8 90.98 314.7∗∗ -206.4

(150.8) (152.7) (137.5) (135.5)
International 256.4 159.5 33.19 -152.2

(191.6) (201.1) (175.6) (175.5)
Constant 4119.7∗∗∗ 4474.3∗∗∗ 4904.9∗∗∗ 5515.5∗∗∗

(430.5) (433.7) (405.8) (394.7)

Observations 5688 5778 5981 6269

Notes: Predictive associations between baseline student characteristics and tiebreakers, by year.
∗, ∗∗, and ∗∗∗ denote significance at the 90, 95, and 99% confidence levels.
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B Room Assignment Monotonicity

As discussed in Section 3.3, a threat to identification is monotonicity violations for our simulated
instrumental variables. Differences between simulated treatment assignments and actual treatment
assignments arise either because some students are not assigned according to the mechanism we
identify as best-fitting the data, and because some students are assigned in this way for their
summer assignments, but request room changes for reasons such as conflict with roommates. The
first group, students our assignment mechanism makes mistakes on, are likely individuals who either
have unobserved room priorities in the rooms they receive (always takers or never takers), or they
are random mistakes for whom the compliers-defiers assumption is likely particularly valid.

The second group of students who dislike their room(mate) assignment and request a new room
are more problematic. It is possible to imagine a particularly cantankerous type of student who,
upon being assigned a roommate of any type, takes issue with their roommate and requests a move.
If such individuals have abnormal treatment effects from assignment to peers (for instance, if they
are antisocial and have opposite signed effects from the general population for all peer traits), this
will contribute to bias in treatment effect estimates if they are able to move to opposite-type peers
when they request a room switch.

We have two arguments for monotonicity violations from cantankerous students being unlikely
to invalidate our estimates. First, per interviews with Housing staff, students who request room
moves are not allowed to request any particular alternative room(mate), they are placed near their
old room in an open spot if one is available. It follows that they are not systematically likely to
receive the opposite peer exposure from their initial assignment, except for the small mechanical
effect from their prior room being unable to be their new room. It follows that even cantankerous
students who reject initial assignments are often not defiers with respect to their peer or dorm
treatment assignments.

Even for the subset of these students who are defiers, the compliers-defiers version of the mono-
tonicity assumption requires only that there be sufficiently many compliers who share treatment
effects with defiers to cancel them out. This means we need individuals in the complier population
who relate to their peers similarly to the way defiers do. The initial assignment takeup rate is infor-
mative about the number of defiers there may be in our population, as we are primarily concerned
about students rejecting their initial assignment and receiving a different realized assignment (we
are not concerned about students having an initial assignment that doesn’t match our simulated
assignments). Statistics on room take-up are shown in Table B.1. We see that room assignment
rejections are extremely rare at just over 2% of assignments. If every single individual who rejects
their initial assignment has abnormal effects from exposure to peers, it is sufficient for us for the
most similar individuals among the great mass of compliers to have overlapping treatment effects.
Given that there appear to be at least 50 compliers for every defier, we feel confident that this
overlap condition is satisfied.
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Table B.1: Initial Room Assignment Take-up by Student Type

Room Takeup Rate
(1)

Total 0.976
Female 0.976
STEM 0.978
Above Median Math ACT 0.977
Above Median Verbal ACT 0.977
Nontraditional Student 0.958
In-State Student 0.979
First Generation Student 0.975
Asian 0.983
Black 0.967
Hispanic 0.971
White 0.976
Other Race 0.976
International 0.982
No Roommate 0.952
Random Room Assignment 0.978
Random Roommate Assignment 0.964
Observations 24265

Notes: Percentage of students of each type whose actual room is the same as their summer assignment.
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